Menu Close

let-f-x-e-2x-ln-1-2x-1-find-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 83245 by mathmax by abdo last updated on 29/Feb/20
let f(x) =e^(−2x) ln(1+2x)  1) find f^((n)) (x) and f^((n)) (0)  2)developp f at integr serie
letf(x)=e2xln(1+2x)1)findf(n)(x)andf(n)(0)2)developpfatintegrserie
Commented by mathmax by abdo last updated on 03/Mar/20
1) f^((n)) (x)=Σ_(k=0) ^n C_n ^k  (ln(2x+1))^((k)) (e^(−2x) )^((n−k))   =ln(2x+1)(−2)^n  e^(−2x)  +Σ_(k=1) ^n  C_n ^k (ln(2x+1))^((k))  (−2)^(n−k)  e^(−2x)   we have (ln(2x+1))^((1)) =(2/(2x+1)) =(1/(x+(1/2))) ⇒  (ln(2x+1))^((k)) =((1/(x+(1/2))))^((k−1)) =(((−1)^(k−1) (k−1)!)/((x+(1/2))^k )) ⇒  f^((n)) (x)=ln(2x+1)(−2)^n  e^(−2x)  +Σ_(k=1) ^n  C_n ^k   ((2^k (−1)^(k−1) (k−1)!)/((2x+1)^k ))(−2)^(n−k)  e^(−2x)   =ln(2x+1)(−2)^n  e^(−2x)  +2^n Σ_(k=1) ^n  C_n ^k   (((−1)^(k−1+n−k) (k−1)!)/((2x+1)^k )) e^(−2x)   f^((n)) (x)=(−2)^n  e^(−2x) { ln(2x+1)+Σ_(k=1) ^n (k−1)! ×(C_n ^k /((2x+1)^k ))}  f^((n)) (0) =Σ_(k=1) ^n (k−1)!C_n ^k  =Σ_(k=1) ^n  (k−1)!×((n!)/(k!(n−k)!))  =n!Σ_(k=1) ^n   (1/(k(n−k)!))
1)f(n)(x)=k=0nCnk(ln(2x+1))(k)(e2x)(nk)=ln(2x+1)(2)ne2x+k=1nCnk(ln(2x+1))(k)(2)nke2xwehave(ln(2x+1))(1)=22x+1=1x+12(ln(2x+1))(k)=(1x+12)(k1)=(1)k1(k1)!(x+12)kf(n)(x)=ln(2x+1)(2)ne2x+k=1nCnk2k(1)k1(k1)!(2x+1)k(2)nke2x=ln(2x+1)(2)ne2x+2nk=1nCnk(1)k1+nk(k1)!(2x+1)ke2xf(n)(x)=(2)ne2x{ln(2x+1)+k=1n(k1)!×Cnk(2x+1)k}f(n)(0)=k=1n(k1)!Cnk=k=1n(k1)!×n!k!(nk)!=n!k=1n1k(nk)!
Commented by mathmax by abdo last updated on 03/Mar/20
2) f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =f(0) +Σ_(n=1) ^∞  ((f^((n)) (0))/(n!))x^n   =Σ_(n=1) ^∞ (Σ_(k=1) ^n  (1/(k(n−k)!)))x^n
2)f(x)=n=0f(n)(0)n!xn=f(0)+n=1f(n)(0)n!xn=n=1(k=1n1k(nk)!)xn

Leave a Reply

Your email address will not be published. Required fields are marked *