Menu Close

let-f-x-e-2x-ln-1-3x-2-1-calculate-f-0-x-and-f-n-0-2-drvelopp-f-at-integr-serie-3-find-f-x-dx-




Question Number 84581 by msup trace by abdo last updated on 14/Mar/20
let f(x) = e^(2x) ln(1−3x^2 )  1) calculate f^((0)) (x) and f^((n)) (0)  2) drvelopp f at integr serie  3) find ∫ f(x)dx
letf(x)=e2xln(13x2)1)calculatef(0)(x)andf(n)(0)2)drveloppfatintegrserie3)findf(x)dx
Commented by mathmax by abdo last updated on 18/Mar/20
1) f(x)=e^(2x) ln(1−3x^2 )⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (ln(1−3x^2 ))^((k)) (e^(2x) )^((n−k))   =2^n  e^(2x) ln(1−3x^2 )+Σ_(k=1) ^n  C_n ^k   (ln(1−3x^2 ))^((k))  2^(n−k)  e^(2x)   we have (ln(1−3x^2 ))^((1)) =((−6x)/(1−3x^2 )) =((6x)/(3x^2 −1)) =((2x)/(x^2 −(1/3)))  =(1/(x−(1/( (√3)))))+(1/(x+(1/( (√3))))) ⇒(ln(1−3x^2 ))^((k)) =(((−1)^(k−1) (k−1)!)/((x−(1/( (√3))))^k ))+(((−1)^(k−1) (k−1)!)/((x+(1/( (√3))))^k ))  =(−1)^(k−1) (k−1)!{(((x+(1/( (√3))))^k +(x−(1/( (√3))))^k )/((x^2 −(1/3))^k ))} ⇒  f^((n)) (x)=2^n  e^(2x) ln(1−3x^2 )  +Σ_(k=1) ^n  (−1)^(k−1) (k−1)! C_n ^k    ×(((x+(1/( (√3))))^k  +(x−(1/( (√3))))^k )/((x^2 −(1/3))^k ))×2^(n−k)  e^(2x)   f^((n)) (0) =Σ_(k=1) ^n (−1)^(k−1) (k−1)! C_n ^k  ((((1/( (√3))))^k  +(−(1/( (√3))))^k )/((−(1/3))^k ))×2^(n−k)
1)f(x)=e2xln(13x2)f(n)(x)=k=0nCnk(ln(13x2))(k)(e2x)(nk)=2ne2xln(13x2)+k=1nCnk(ln(13x2))(k)2nke2xwehave(ln(13x2))(1)=6x13x2=6x3x21=2xx213=1x13+1x+13(ln(13x2))(k)=(1)k1(k1)!(x13)k+(1)k1(k1)!(x+13)k=(1)k1(k1)!{(x+13)k+(x13)k(x213)k}f(n)(x)=2ne2xln(13x2)+k=1n(1)k1(k1)!Cnk×(x+13)k+(x13)k(x213)k×2nke2xf(n)(0)=k=1n(1)k1(k1)!Cnk(13)k+(13)k(13)k×2nk
Commented by mathmax by abdo last updated on 18/Mar/20
2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n    and f^((n)) (0) is knwn
2)f(x)=n=0f(n)(0)n!xnandf(n)(0)isknwn

Leave a Reply

Your email address will not be published. Required fields are marked *