Menu Close

let-f-x-e-2x-ln-1-x-developp-f-at-integr-serie-




Question Number 37269 by abdo.msup.com last updated on 11/Jun/18
let f(x)= e^(−2x) ln(1+x)  developp f at integr serie .
letf(x)=e2xln(1+x)developpfatintegrserie.
Commented by prof Abdo imad last updated on 24/Jun/18
f^((n)) (x)=Σ_(k=0) ^n (ln(1+x))^((k)) (e^(−2x) )^((n−k))  but  (e^(−2x) )^((p)) =(−2)^p  e^(−2x)   ln(1+x)^((1)) = (1/(1+x)) ⇒(ln(1+x))^((p)) = (((−1)^(p−1) (p−1)!)/((1+x)^p ))  f^((n)) (x)=(−2)^n  e^(−2x) ln(1+x)  +Σ_(k=1) ^n   (((−1)^(k−1) (k−1)!)/((1+x)^k )) (−2)^(n−k)  e^(−2x)  ⇒  f^((n)) (0) =Σ_(k=1) ^n (−1)^(k−1) (k−1)!(−2)^(n−k)   =(−2)^n  Σ_(k=1) ^n (−1)^(k−1) (k−1)!(−2)^(−k)  .  f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   (((−2)^n )/(n!)){Σ_(k=1) ^n (−1)^(k−1) (k−1)!(−2)^(−k) }x^n
f(n)(x)=k=0n(ln(1+x))(k)(e2x)(nk)but(e2x)(p)=(2)pe2xln(1+x)(1)=11+x(ln(1+x))(p)=(1)p1(p1)!(1+x)pf(n)(x)=(2)ne2xln(1+x)+k=1n(1)k1(k1)!(1+x)k(2)nke2xf(n)(0)=k=1n(1)k1(k1)!(2)nk=(2)nk=1n(1)k1(k1)!(2)k.f(x)=n=0f(n)(0)n!xn=n=0(2)nn!{k=1n(1)k1(k1)!(2)k}xn
Commented by prof Abdo imad last updated on 24/Jun/18
another way but easy  we have  e^(−2x) =Σ_(n=0) ^∞   (((−2x)^n )/(n!))  and  ln^′ (1+x)= (1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n   with ∣x∣<1⇒  ln(1+x)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)  +c (c=0)  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^n  ⇒  f(x)=(Σ_(n=0) ^∞  (((−2)^n )/(n!))x^n ) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )  =(1+Σ_(n=1) ^∞   (((−2)^n )/(n!))x^n )(Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n   +Σ_(n=1) ^∞  c_n x^n   with  c_n = Σ_(i+j=n) a_i  b_j   =Σ_(i+j=n)  (((−2)^i )/(i!))  (((−1)^(j−1) )/j)  =Σ_(i=1) ^(n−1)   a_i b_(n−i)  =Σ_(i=1) ^(n−1)    (((−2)^i )/(i!)) (((−1)^(n−i−1) )/(n−i))
anotherwaybuteasywehavee2x=n=0(2x)nn!andln(1+x)=11+x=n=0(1)nxnwithx∣<1ln(1+x)=n=0(1)nn+1xn+1+c(c=0)=n=1(1)n1nxnf(x)=(n=0(2)nn!xn)(n=1(1)n1nxn)=(1+n=1(2)nn!xn)(n=1(1)n1nxn)=n=1(1)n1nxn+n=1cnxnwithcn=i+j=naibj=i+j=n(2)ii!(1)j1j=i=1n1aibni=i=1n1(2)ii!(1)ni1ni

Leave a Reply

Your email address will not be published. Required fields are marked *