let-f-x-e-2x-ln-1-x-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 37269 by abdo.msup.com last updated on 11/Jun/18 letf(x)=e−2xln(1+x)developpfatintegrserie. Commented by prof Abdo imad last updated on 24/Jun/18 f(n)(x)=∑k=0n(ln(1+x))(k)(e−2x)(n−k)but(e−2x)(p)=(−2)pe−2xln(1+x)(1)=11+x⇒(ln(1+x))(p)=(−1)p−1(p−1)!(1+x)pf(n)(x)=(−2)ne−2xln(1+x)+∑k=1n(−1)k−1(k−1)!(1+x)k(−2)n−ke−2x⇒f(n)(0)=∑k=1n(−1)k−1(k−1)!(−2)n−k=(−2)n∑k=1n(−1)k−1(k−1)!(−2)−k.f(x)=∑n=0∞f(n)(0)n!xn=∑n=0∞(−2)nn!{∑k=1n(−1)k−1(k−1)!(−2)−k}xn Commented by prof Abdo imad last updated on 24/Jun/18 anotherwaybuteasywehavee−2x=∑n=0∞(−2x)nn!andln′(1+x)=11+x=∑n=0∞(−1)nxnwith∣x∣<1⇒ln(1+x)=∑n=0∞(−1)nn+1xn+1+c(c=0)=∑n=1∞(−1)n−1nxn⇒f(x)=(∑n=0∞(−2)nn!xn)(∑n=1∞(−1)n−1nxn)=(1+∑n=1∞(−2)nn!xn)(∑n=1∞(−1)n−1nxn)=∑n=1∞(−1)n−1nxn+∑n=1∞cnxnwithcn=∑i+j=naibj=∑i+j=n(−2)ii!(−1)j−1j=∑i=1n−1aibn−i=∑i=1n−1(−2)ii!(−1)n−i−1n−i Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: There-are-14-boys-and-10-girls-in-a-classroom-The-teacher-wants-to-form-a-team-of-5-students-The-team-must-have-a-least-two-boys-and-two-girls-Find-the-number-of-ways-the-team-can-be-chosen-Next Next post: The-coordinates-of-two-points-A-amp-B-are-0-8-and-9-4-respectively-The-point-P-with-coordinate-p-0-lies-on-the-x-axis-where-0-lt-p-lt-9-Let-s-denotes-the-sum-of-the-length-of-two-segments-PA Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.