Menu Close

let-f-x-e-2x-ln-3-x-2-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 106133 by mathmax by abdo last updated on 02/Aug/20
let f(x) =e^(−2x) ln(3−x^2 )  1) calculate f^((n)) (x)and f^((n)) (0)  2) developp f at integr serie
letf(x)=e2xln(3x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie
Answered by mathmax by abdo last updated on 03/Aug/20
1) we have f(x) =e^(−2x) ln(3−x^2 ) ⇒  f^((n)) (x)=Σ_(k=0) ^n  C_n ^(k ) {ln(3−x^2 )}^((k))  (e^(−2x) )^((n−k))   =ln(3−x^2 )(−2)^n  e^(−2x)  +Σ_(k=1) ^n  C_n ^k  {ln(3−x^2 )}^((k)) (−2)^(n−k)  e^(−2x)   we have {ln(3−x^2 )}^((1))  =((−2x)/(3−x^2 )) =((2x)/((x−(√3))(x+(√3))))  =(1/(x−(√3))) +(1/(x+(√3))) ⇒{ln(3−x^2 )}^((k))  =((1/(x−(√3)))+(1/(x+(√3))))^((k−1))   =(((−1)^(k−1) (k−1)!)/((x−(√3))^k )) +(((−1)^(k−1) (k−1)!)/((x+(√3))^k ))  =(−1)^(k−1) (k−1)!{(((x+(√3))^k  +(x−(√3))^k )/((x^2 −3)^k ))} ⇒  f^((n)) (x) =(−2)^n  e^(−2x) ln(3−x^2 )  +Σ_(k=1) ^(n ) (−2)^(n−k)  e^(−2x)  C_n ^k (−1)^(k−1) (k−1)!×(((x+(√3))^k  +(x−(√3))^k )/((x^2 −3)^k ))
1)wehavef(x)=e2xln(3x2)f(n)(x)=k=0nCnk{ln(3x2)}(k)(e2x)(nk)=ln(3x2)(2)ne2x+k=1nCnk{ln(3x2)}(k)(2)nke2xwehave{ln(3x2)}(1)=2x3x2=2x(x3)(x+3)=1x3+1x+3{ln(3x2)}(k)=(1x3+1x+3)(k1)=(1)k1(\boldsymbolk1)!(x3)k+(1)k1(k1)!(x+3)k=(1)k1(k1)!{(x+3)k+(x3)k(x23)k}f(n)(x)=(2)ne2xln(3x2)+k=1n(2)nke2xCnk(1)k1(k1)!×(x+3)k+(x3)k(x23)k
Commented by mathmax by abdo last updated on 03/Aug/20
f^((n)) (0) =ln(3)+Σ_(k=1) ^n (−2)^(n−k)  C_n ^k (−1)^(k−1) (k−1)!×((((√3))^k  +(−(√3))^k )/((−3)^k ))  =ln(3) −Σ_(k=1) ^n C_n ^k  (−1)^(n−k)  2^(n−k)   (k−1)!×((((√3))^(k ) +(−(√3))^k )/3^k )  f^((n)) (0)=ln(3) +(−2)^n  Σ_(k=1) ^n  C_n ^k  (−1)^(k−1) (k−1)!×((((√3))^k +(−(√3))^k )/3^k )
f(n)(0)=ln(3)+k=1n(2)nkCnk(1)k1(k1)!×(3)k+(3)k(3)k=ln(3)k=1nCnk(1)nk2nk(k1)!×(3)k+(3)k3kf(n)(0)=ln(3)+(2)nk=1nCnk(1)k1(k1)!×(3)k+(3)k3k
Commented by mathmax by abdo last updated on 03/Aug/20
2)f(x) =Σ_(n=0) ^∞  ((f^((n)) (o))/(n!)) x^n  =ln(3)  +Σ_(n=1) ^∞ (1/(n!)){ln(3)+(−2)^n  Σ_(k=1) ^n  C_n ^k (−1)^(k−1) (k−1)!×((((√3))^k  +(−(√3))^k )/3^k )}x^n   =ln(3)e^(x )  +Σ_(n=1) ^∞  {(−2)^n  Σ_(p=1) ^([(n/2)] )  C_n ^(2p)  (−1)(2p−1)!×((2.3^p )/3^(2p) )}x^n   f(x)=ln(3)e^x  +Σ_(n=1) ^∞  (−2)^(n+1) { Σ_(p=1) ^([(n/2)])   C_n ^(2p)  (((2p−1))/3^p )}x^n
2)f(x)=n=0f(n)(o)n!xn=ln(3)+n=11n!{ln(3)+(2)nk=1nCnk(1)k1(k1)!×(3)k+(3)k3k}xn=ln(3)ex+n=1{(2)np=1[n2]Cn2p(1)(2p1)!×2.3p32p}xnf(x)=ln(3)ex+n=1(2)n+1{p=1[n2]Cn2p(2p1)3p}xn
Commented by abdomathmax last updated on 03/Aug/20
f(x)=ln(3)Σ_(n=0) ^∞  (x^n /(n!))  +Σ_(n=1) ^∞ (−2)^(n+1) {Σ_(p=1) ^([(n/2)] )  C_n ^(2p)  (((2p−1)!)/3^p )}x^n
f(x)=ln(3)n=0xnn!+n=1(2)n+1{p=1[n2]Cn2p(2p1)!3p}xn

Leave a Reply

Your email address will not be published. Required fields are marked *