let-f-x-e-x-1-x-sin-3x-1-dtermine-f-n-x-and-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 61329 by maxmathsup by imad last updated on 01/Jun/19 letf(x)=e−x1+xsin(3x)1)dterminef(n)(x)andf(n)(0)2)developpfatintegrserie. Commented by maxmathsup by imad last updated on 03/Jun/19 1)wehavef(x)=Im(11+xe−x+3ix)=Im(11+xe(−1+3i)x)=Im(w(x))wehavew(x)(n)={11+xe(−1+3i)x}(n)=leibniz∑k=0nCnk(11+x)(k)(e(−1+3i)x)(n−k)but(ezx)(k)=zfixedzkezx⇒{e(−1+3i)x}(n−k)=(−1+3i)n−ke(−1+3i)xalso(11+x)(k)=(−1)kk!(1+x)k+1⇒w(n)(x)=∑k=0nCnk(−1)kk!(1+x)k+1(−1+3i)n−ke(−1+3i)xwehave∣−1+3i∣=1+9=10⇒−1+3i=10(−110+3i10)=reiθ⇒r=10andcosθ=−110,sinθ=310⇒tanθ=−3⇒θ=−arctan(3)⇒−1+3i=10e−iarctan(3)=⇒(−1+3i)n−k=10n−k2e−(n−k)iarctan(3)and(−1+3i)n−ke(−1+3i)x=10n−k2(cos(n−k)arctan3)−isin(n−k)arctan(3)}e−x{cos(3x)+isin(3x)}e−x10n−k2{cos(3x)cos(n−k)arctan3+isin(3x)cos(n−k)arctan3−icos(3x)sin(n−k)arctan3+sin(3x)sin(n−k)arctan3⇒f(n)(x)=Im(w(n))=∑k=0n(−1)kk!Cnk(x+1)k+1e−x10n−k2{sin(3x)cos{(n−k)arctan(3)−cos(3x)sin{(n−k)arctan(3)}⇒f(n)(0)=−∑k=0n(−1)kk!Cnk10n−k2sin{(n−k)arctan3} Commented by maxmathsup by imad last updated on 03/Jun/19 2)f(x)=∑n=0∞f(n)(0)n!xn=∑n=0∞1n!{∑k=0n(−1)k+1k!n!k!(n−k)!10n−k2sin{(n−k)arctan(3)}=∑n=0∞(∑k=0n(−1)k+110n−k2(n−k)!sin{(n−k)arctan3})xn⇒f(x)=∑n=0∞anxnwithan=∑k=0n(−1)k+110n−k2(n−k)!sin{(n−k)arctan3} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-a-0-1-sin-2x-1-ax-2-dx-with-a-lt-1-1-approximate-f-a-by-a-polynom-2-find-the-value-perhaps-not-exact-of-0-1-sin-2x-1-2x-2-dx-3-let-g-a-0-1-x-2-sNext Next post: 0-x-1-x-2-sin-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.