Menu Close

let-f-x-e-x-2-0-x-e-t-2-dt-1-find-a-d-e-verified-by-f-2-developpf-at-integr-serie-




Question Number 34699 by abdo imad last updated on 10/May/18
let f(x)=e^(−x^2 )  ∫_0 ^x  e^t^2  dt  1) find a d.e verified by f  2) developpf at integr serie.
letf(x)=ex20xet2dt1)findad.everifiedbyf2)developpfatintegrserie.
Commented by math khazana by abdo last updated on 11/May/18
we have f^′ (x)= −2x e^(−x^2 )  ∫_0 ^x  e^t^2  dt  +e^(−x^2 )  e^x^2    =−2xf(x) +1 so f issolution of the d.e.  y^′ =−2xy +1  2) let put f(x)=Σ_(n=0) ^∞  a_n x^n ⇒f^′ (x)= Σ_(n=1) ^∞ na_n x^(n−1)   f^′  +2xf −1=0 ⇔ Σ_(n=1) ^∞ n a_n  x^(n−1)   +2x Σ_(n=0) ^∞  a_n x^n  −1 =0 ⇔  Σ_(n=0) ^∞   (n+1)a_(n+1) x^n   + 2Σ_(n=0) ^∞  a_n x^(n+1)  −1 =0⇔  Σ_(n=0) ^∞   (n+1)a_(n+1)  x^n    +2 Σ_(n=1) ^∞ a_(n−1) x^n  −1 =0⇔  a_1   + Σ_(n=1) ^∞  {(n+1)a_(n+1)  +2 a_(n−1) }x^n  −1=0 ⇔  a_(1 ) =1 and  ∀n≥1   (n+1)a_(n+1)  +2 a_(n−1) =0 ⇒  (n+1)a_(n+1)  = −2 a_(n−1)  ⇒ a_(n+1) =((−2)/(n+1)) a_(n−1)  ⇒  a_(2n+1) = ((−2)/(2n+1)) a_(2n−1)    and a_(2n)   =−(2/(2n)) a_(2n−2) =((−1)/n) a_(2n−2)   Π_(k=1) ^n a_(2k+1) = (−2)^(n+1)   ((Π_(k=1) ^n  a_(2k−1) )/(Π_(k=0) ^n (2k+1)))   .a_3 .a_5 .....a_(2n+1)  = (((−2)^(n+1) )/(1.3.5....(2n+1)))  a_1 .a_3  ...a_(2n−1)   ⇒ a_(2n+1) =  (((−2)^(n+1) )/(1.3.5.....(2n+1)))  also we have  Π_(k=1) ^n  a_(2k)  = (((−1)^n )/(n!)) Π_(k=1) ^n  a_(2k−2)  ⇒  a_2 .a_4 .....a_(2n)  = (((−1)^n )/(n!))  a_0  a_2 ....a_(2n−2) ⇒  a_(2n)   = (((−1)^n )/(n!)) a_0   f(x) = Σ_(n=0) ^∞  a_(2n)  x^(2n)    +Σ_(n=0) ^∞  a_(2n+1) x^(2n+1)   = Σ_(n=0) ^∞   (((−1)^n )/(n!))a_0  x^(2n)    +Σ_(n=0) ^∞    (((−2)^(n+1) )/(1.3.5...(2n+1))) x^(2n+1)
wehavef(x)=2xex20xet2dt+ex2ex2=2xf(x)+1sofissolutionofthed.e.y=2xy+12)letputf(x)=n=0anxnf(x)=n=1nanxn1f+2xf1=0n=1nanxn1+2xn=0anxn1=0n=0(n+1)an+1xn+2n=0anxn+11=0n=0(n+1)an+1xn+2n=1an1xn1=0a1+n=1{(n+1)an+1+2an1}xn1=0a1=1andn1(n+1)an+1+2an1=0(n+1)an+1=2an1an+1=2n+1an1a2n+1=22n+1a2n1anda2n=22na2n2=1na2n2k=1na2k+1=(2)n+1k=1na2k1k=0n(2k+1).a3.a5..a2n+1=(2)n+11.3.5.(2n+1)a1.a3a2n1a2n+1=(2)n+11.3.5..(2n+1)alsowehavek=1na2k=(1)nn!k=1na2k2a2.a4..a2n=(1)nn!a0a2.a2n2a2n=(1)nn!a0f(x)=n=0a2nx2n+n=0a2n+1x2n+1=n=0(1)nn!a0x2n+n=0(2)n+11.3.5(2n+1)x2n+1
Commented by math khazana by abdo last updated on 11/May/18
we have f(x) = e^(−x^2 )   ∫_0 ^x   e^t^2  dt ⇒  f(−x) = e^(−x^2 )    ∫_0 ^(−x)  e^t^2  dt  =_(t=−u)  e^(−x^2 )   ∫_o ^x   e^u^2  (−du) = − e^x^2   ∫_0 ^x  e^u^2  du =−f(x)  so f is odd  ⇒ a_(2n) =0  ⇒  f(x)  =  Σ_(n=0) ^∞     (((−2)^(n+1) )/(1.3.5....(2n+1))) x^(2n+1)   .
wehavef(x)=ex20xet2dtf(x)=ex20xet2dt=t=uex2oxeu2(du)=ex20xeu2du=f(x)sofisodda2n=0f(x)=n=0(2)n+11.3.5.(2n+1)x2n+1.

Leave a Reply

Your email address will not be published. Required fields are marked *