let-f-x-e-x-2-0-x-e-t-2-dt-1-find-a-d-e-verified-by-f-2-developpf-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 34699 by abdo imad last updated on 10/May/18 letf(x)=e−x2∫0xet2dt1)findad.everifiedbyf2)developpfatintegrserie. Commented by math khazana by abdo last updated on 11/May/18 wehavef′(x)=−2xe−x2∫0xet2dt+e−x2ex2=−2xf(x)+1sofissolutionofthed.e.y′=−2xy+12)letputf(x)=∑n=0∞anxn⇒f′(x)=∑n=1∞nanxn−1f′+2xf−1=0⇔∑n=1∞nanxn−1+2x∑n=0∞anxn−1=0⇔∑n=0∞(n+1)an+1xn+2∑n=0∞anxn+1−1=0⇔∑n=0∞(n+1)an+1xn+2∑n=1∞an−1xn−1=0⇔a1+∑n=1∞{(n+1)an+1+2an−1}xn−1=0⇔a1=1and∀n⩾1(n+1)an+1+2an−1=0⇒(n+1)an+1=−2an−1⇒an+1=−2n+1an−1⇒a2n+1=−22n+1a2n−1anda2n=−22na2n−2=−1na2n−2∏k=1na2k+1=(−2)n+1∏k=1na2k−1∏k=0n(2k+1).a3.a5…..a2n+1=(−2)n+11.3.5….(2n+1)a1.a3…a2n−1⇒a2n+1=(−2)n+11.3.5…..(2n+1)alsowehave∏k=1na2k=(−1)nn!∏k=1na2k−2⇒a2.a4…..a2n=(−1)nn!a0a2….a2n−2⇒a2n=(−1)nn!a0f(x)=∑n=0∞a2nx2n+∑n=0∞a2n+1x2n+1=∑n=0∞(−1)nn!a0x2n+∑n=0∞(−2)n+11.3.5…(2n+1)x2n+1 Commented by math khazana by abdo last updated on 11/May/18 wehavef(x)=e−x2∫0xet2dt⇒f(−x)=e−x2∫0−xet2dt=t=−ue−x2∫oxeu2(−du)=−ex2∫0xeu2du=−f(x)sofisodd⇒a2n=0⇒f(x)=∑n=0∞(−2)n+11.3.5….(2n+1)x2n+1. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-0-1-n-1-e-x-n-lnx-dx-Next Next post: Question-165774 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.