Menu Close

let-f-x-e-x-2-1-prove-that-f-n-x-p-n-x-e-x-2-with-p-n-is-a-polynom-2-find-a-relation-of-recurrence-between-the-p-n-3-calculate-p-1-p-2-p-3-p-4-




Question Number 36926 by maxmathsup by imad last updated on 07/Jun/18
let f(x) = e^(−x^2 )   1) prove that f^((n)) (x)=p_n (x)e^(−x^2 )   with p_n  is a polynom  2) find a relation of recurrence between the p_n   3) calculate p_1 ,p_2 ,p_3 ,p_4
letf(x)=ex21)provethatf(n)(x)=pn(x)ex2withpnisapolynom2)findarelationofrecurrencebetweenthepn3)calculatep1,p2,p3,p4
Answered by math khazana by abdo last updated on 10/Jun/18
we have f^′ (x) =−2x e^(−x^2 )   f^((2)) (x) =−2 e^(−x^2 )  +4x^2  e^(−x^2 )  =(4x^2  −2)e^(−x^2 )   let suppose that f^((n)) (x) =p_n (x) e^(−x^2 )  with p_n   a polynome ⇒ f^((n+1)) (x)= (p_n (x)e^(−x^2 ) )^′   =p_n ^′ (x) e^(−x^2 )  −2x p_n (x) e^(−x^2 )   ={ p_n ^′ (x) −2x p_n (x)}e^(−x^2  )    =p_(n+1)  (x)e^(−x^2 )   with  p_(n+1) (x)= p_n ^′ (x) −2x p_n (x) and its clear  that deg(p_n ) =n  2) p_(n+1) (x)= −2xp_n (x) +p_n ^′ (x)  3) p_1 (x) =−2x  and p_2 (x) =−2xp_1 (x) +p_1 ^′ (x)  =4x^2  −2  p_3 (x) =−2xp_2 (x) +p_2 ^′ (x)   =−2x(4x^2  −2) +8x=−8x^3  +4x +8x  =−8x^3  +12x  p_4 (x) =−2xp_3 (x) +p_3 ^′ (x)  =−2x(−8x^3  +12x) −24x^2  +12  =16 x^4   −24x^2  −24x^2  +12  =16 x^4  −48x^2  +12 .
wehavef(x)=2xex2f(2)(x)=2ex2+4x2ex2=(4x22)ex2letsupposethatf(n)(x)=pn(x)ex2withpnapolynomef(n+1)(x)=(pn(x)ex2)=pn(x)ex22xpn(x)ex2={pn(x)2xpn(x)}ex2=pn+1(x)ex2withpn+1(x)=pn(x)2xpn(x)anditsclearthatdeg(pn)=n2)pn+1(x)=2xpn(x)+pn(x)3)p1(x)=2xandp2(x)=2xp1(x)+p1(x)=4x22p3(x)=2xp2(x)+p2(x)=2x(4x22)+8x=8x3+4x+8x=8x3+12xp4(x)=2xp3(x)+p3(x)=2x(8x3+12x)24x2+12=16x424x224x2+12=16x448x2+12.

Leave a Reply

Your email address will not be published. Required fields are marked *