Menu Close

let-f-x-e-x-2-1-x-2-developp-f-at-integr-serie-




Question Number 39291 by math khazana by abdo last updated on 04/Jul/18
let f(x)=(e^(−x^2 ) /(1+x^2 ))  developp f at integr serie .
letf(x)=ex21+x2developpfatintegrserie.
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
we have e^(−x^2 ) = Σ_(n=0) ^∞   (((−x^2 )^n )/(n!)) = Σ_(n=0) ^∞  (((−1)^n  x^(2n) )/(n!))  (1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  ⇒  f(x)= (Σ_(n=0) ^∞  (((−1)^n )/(n!)) x^(2n) )(Σ_(n=0) ^∞  (−1)^n  x^(2n) )  =Σ_(n=0) ^∞  c_n  x^(2n)    with c_n =Σ_(i+j=n)    a_i b_j   =Σ_(i+j=n)   (((−1)^i )/(i!)) (−1)^j   =Σ_(i=0) ^n     (((−1)^i )/(i!)) (−1)^(n−i)  = Σ_(i=0) ^n   (((−1)^n )/(i!)) ⇒  f(x)= Σ_(n=0) ^∞  (−1)^n (Σ_(i=0) ^n  (1/(i!))) x^n   .  Σ
wehaveex2=n=0(x2)nn!=n=0(1)nx2nn!11+x2=n=0(1)nx2nf(x)=(n=0(1)nn!x2n)(n=0(1)nx2n)=n=0cnx2nwithcn=i+j=naibj=i+j=n(1)ii!(1)j=i=0n(1)ii!(1)ni=i=0n(1)ni!f(x)=n=0(1)n(i=0n1i!)xn.Σ
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
the radius of convergence is R=1
theradiusofconvergenceisR=1

Leave a Reply

Your email address will not be published. Required fields are marked *