Question Number 60701 by maxmathsup by imad last updated on 24/May/19
$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{2}−{x}\right)\:\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by maxmathsup by imad last updated on 27/May/19
$${we}\:{have}\:{f}\left({x}\right)\:={e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{2}\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\right)\:={ln}\left(\mathrm{2}\right)\:{e}^{−{x}^{\mathrm{2}} } \:+{e}^{−{x}^{\mathrm{2}} } {ln}\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right) \\ $$$${if}\:\mid\frac{{x}}{\mathrm{2}}\mid<\mathrm{1}\:\Rightarrow−\mathrm{2}<{x}<\mathrm{2}\:\:{we}\:{get}\:\:{e}^{−{x}^{\mathrm{2}} } \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−{x}^{\mathrm{2}} \right)^{{n}} }{{n}!}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!} \\ $$$${ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\frac{{u}^{{n}} }{{n}}\:\Rightarrow{ln}\left(\mathrm{1}−{u}\right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{u}^{{n}} }{{n}}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}\mathrm{2}^{{n}} }\:\:\Rightarrow{f}\left({x}\right)={ln}\left(\mathrm{2}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} }{{n}!} \\ $$$$−\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{x}^{\mathrm{2}{n}} }{{n}!}\right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}\mathrm{2}^{{n}} }\right)\: \\ $$$$={ln}\left(\mathrm{2}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}\mathrm{2}^{{n}} }\:+\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:{x}^{\mathrm{2}{n}} \right)\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} }{x}^{{n}} \right) \\ $$$${let}\:{a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:{x}^{\mathrm{2}{n}} \:\:\:{and}\:{b}_{{n}} =\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} }{x}^{{n}} \:\Rightarrow \\ $$$$\left(\sum_{{n}=\mathrm{1}} ^{\infty} \left(…\right)\right)\left(\Sigma\left(…\right)\right)\:=\left(\sum_{{n}=\mathrm{1}} ^{\infty} {a}_{{n}} \right)\:\left(\sum_{{n}=\mathrm{1}} ^{\infty} {b}_{{n}} \right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{c}_{{n}} \\ $$$${c}_{{n}} =\sum_{{i}+{j}={n}\:} \:\:{a}_{{i}} {b}_{{j}} \:\:=\sum_{{i}=\mathrm{1}} ^{{n}} \:{a}_{{i}} \:{b}_{{n}−{i}} \:\:\:=\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!}\:{x}^{\mathrm{2}{i}} \:\:\:\:\frac{\mathrm{1}}{\left({n}−{i}\right)\mathrm{2}^{{n}−{i}} }\:{x}^{{n}−{i}} \\ $$$$=\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!\left({n}−{i}\right)\mathrm{2}^{{n}−{i}} }\:{x}^{{n}+{i}} \:\Rightarrow \\ $$$${f}\left({x}\right)\:={ln}\left(\mathrm{2}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{{n}!}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}\:\mathrm{2}^{{n}} }\:+\sum_{{n}=\mathrm{1}} ^{\infty} \left(\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{i}} }{{i}!\left({n}−{i}\right)!\mathrm{2}^{{n}−{i}} }{x}^{{i}} \right){x}^{{n}} \\ $$$$….{be}\:{continued}…. \\ $$