Menu Close

let-f-x-e-x-2-x-developp-f-at-integr-serie-




Question Number 34849 by math khazana by abdo last updated on 11/May/18
let f(x) =    (e^(−x) /(2+x))  developp f at integr serie.
letf(x)=ex2+xdeveloppfatintegrserie.
Commented by math khazana by abdo last updated on 13/May/18
we have f(x)= (e^(−x) /(2(1+(x/2)))) ⇒ for ∣x∣<2   2f(x)= (Σ_(n=0) ^∞  (−1)^n ((x/2))^n ) .(Σ_(n=0) ^∞   (((−1)^n  x^n )/(n!)))  = (Σ_(n=0) ^∞    (((−1)^n )/2^n ) x^n  ).(Σ_(n=0) ^∞  (((−1)^n )/(n!)) x^n )  =Σ_(n=0) ^∞  c_n  x^n    with c_n = Σ_(i+j =n)  a_i  b_j   = Σ_(i+j =n)  (((−1)^i )/2^i ) (((−1)^j )/(j!)) =Σ_(i=0) ^n  a_i  b_(n−i)   = Σ_(i=0) ^n    (((−1)^i )/2^i ) (((−1)^(n−i) )/((n−i)!)) =Σ_(i=0) ^n    (((−1)^n )/((n−i)!2^i )) ⇒  f(x)= (1/2) Σ_(n=0) ^∞  ( Σ_(i=0) ^n   (((−1)^n )/(2^i (n−i)!)))x^n  .
wehavef(x)=ex2(1+x2)forx∣<22f(x)=(n=0(1)n(x2)n).(n=0(1)nxnn!)=(n=0(1)n2nxn).(n=0(1)nn!xn)=n=0cnxnwithcn=i+j=naibj=i+j=n(1)i2i(1)jj!=i=0naibni=i=0n(1)i2i(1)ni(ni)!=i=0n(1)n(ni)!2if(x)=12n=0(i=0n(1)n2i(ni)!)xn.
Commented by math khazana by abdo last updated on 13/May/18
another method  f(x)= Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n    let calculate f^((n)) (0)  leibnitz formula give f^((n)) (x)= Σ_(k=0) ^n  C_n ^k  ((1/(2+x)))^((k))  (e^(−x) )^((n−k))   =Σ_(k=0) ^n   C_n ^k    (((−1)^k  k!)/((x+2)^(k+1) ))  (−1)^(n−k)  e^(−x)  ⇒  f^((n)) (0) = Σ_(k=0) ^n   C_n ^k   ((k! (−1)^n )/2^(k+1) ) ⇒  f(x) = Σ_(n=0) ^∞ (Σ_(k=0) ^n   C_n ^k       ((k!)/(n!))  (((−1)^n )/2^(k+1) )) x^n   but  C_n ^k   .((k!)/(n!))  = ((n!)/(k!(n−k)!)) ((k!)/(n!)) = (1/((n−k)!)) ⇒  f(x) = Σ_(n=0) ^∞  (Σ_(k=0) ^n    (((−1)^n )/((n−k)! 2^(k+1) )))x^n   .
anothermethodf(x)=n=0f(n)(0)n!xnletcalculatef(n)(0)leibnitzformulagivef(n)(x)=k=0nCnk(12+x)(k)(ex)(nk)=k=0nCnk(1)kk!(x+2)k+1(1)nkexf(n)(0)=k=0nCnkk!(1)n2k+1f(x)=n=0(k=0nCnkk!n!(1)n2k+1)xnbutCnk.k!n!=n!k!(nk)!k!n!=1(nk)!f(x)=n=0(k=0n(1)n(nk)!2k+1)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *