Let-f-x-e-x-cos-x-Find-n-0-f-n-x-2-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 145339 by qaz last updated on 04/Jul/21 Letf(x)=excosx,Find∑∞n=0f(n)(x)2n=? Answered by mathmax by abdo last updated on 04/Jul/21 f(x)=excosx⇒f(n)(x)=∑k=0nCnk(cosx)(k)(ex)(n−k)=∑k=0nCnkcos(x+kπ2)ex⇒∑n=0∞f(n)(x)2n=ex∑n=0∞12n(∑k=0nCnkcos(x+kπ2))∑k=0nCnkcos(x+kπ2)=Re(∑k=0nCnkei(x+kπ2))∑k=0n(…)=eix∑k=0nCnk(i)k=eix(1+i)n=eix(2)n(eiπ4)n=(2)neixeinπ4=(2)nei(x+nπ4)⇒∑k=0nCnkcos(x+kπ2)=(2)ncos(x+nπ4)⇒∑n=0∞f(n)(x)2n=ex∑n=0∞(22)ncos(x+nπ4)∑n=0∞(12)ncos(x+nπ4)=Re(∑n=0∞(12)nei(x+nπ4))Σ(…)=eix∑n=0∞(12)n(eiπ4)n=eix∑n=0∞(eiπ42)n=eix×11−12eiπ4=2eix2−12−i2=2eix1−i=2eix(1+i)2=eix2eiπ4=2ei(x+π4)⇒Re(….)=2cos(x+π4)⇒∑n=0∞f(n)(x)2n=2excos(x+π4) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-79798Next Next post: If-sin-3-x-cos-3-x-3sinxcosx-1-0-then-find-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.