Menu Close

Let-f-x-e-x-cos-x-Find-n-0-f-n-x-2-n-




Question Number 145339 by qaz last updated on 04/Jul/21
Let f(x)=e^x cos x,Find Σ_(n=0) ^∞ ((f^((n)) (x))/2^n )=?
Letf(x)=excosx,Findn=0f(n)(x)2n=?
Answered by mathmax by abdo last updated on 04/Jul/21
f(x)=e^x  cosx ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (cosx)^((k))  (e^x )^((n−k))   =Σ_(k=0) ^n  C_n ^k  cos(x+((kπ)/2))e^x  ⇒  Σ_(n=0) ^∞  ((f^((n)) (x))/2^n )=e^x Σ_(n=0) ^∞ (1/2^n )(Σ_(k=0) ^n  C_n ^k  cos(x+((kπ)/2)))  Σ_(k=0) ^n  C_n ^k  cos(x+((kπ)/2))=Re(Σ_(k=0) ^n  C_n ^k  e^(i(x+((kπ)/2))) )  Σ_(k=0) ^n  (...)=e^(ix)  Σ_(k=0) ^n  C_n ^k  (i)^k  =e^(ix) (1+i)^n   =e^(ix) ((√2))^n  (e^((iπ)/4) )^n  =((√2))^n  e^(ix) e^((inπ)/4)  =((√2))^n  e^(i(x+((nπ)/4)))   ⇒Σ_(k=0) ^n  C_n ^k  cos(x+((kπ)/2))=((√2))^n cos(x+((nπ)/4)) ⇒  Σ_(n=0) ^∞  ((f^((n)) (x))/2^n )=e^x  Σ_(n=0) ^∞  (((√2)/2))^n cos(x+((nπ)/4))  Σ_(n=0) ^∞  ((1/( (√2))))^n  cos(x+((nπ)/4))=Re(Σ_(n=0) ^∞  ((1/( (√2))))^n e^(i(x+((nπ)/4)) ))  Σ(...)=e^(ix)  Σ_(n=0) ^∞  ((1/( (√2))))^n  (e^((iπ)/4) )^n   =e^(ix)  Σ_(n=0) ^∞  ((e^((iπ)/4) /( (√2))))^n  =e^(ix) ×(1/(1−(1/( (√2)))e^((iπ)/4) ))  =(((√2)e^(ix) )/( (√2)−(1/( (√2)))−(i/( (√2)))))=((2e^(ix) )/(1−i))=((2e^(ix) (1+i))/2)  =e^(ix) (√2)e^((iπ)/4)  =(√2)e^(i(x+(π/4)))  ⇒Re(....)=(√2)cos(x+(π/4)) ⇒  Σ_(n=0) ^∞  ((f^((n)) (x))/2^n )=(√2)e^x  cos(x+(π/4))
f(x)=excosxf(n)(x)=k=0nCnk(cosx)(k)(ex)(nk)=k=0nCnkcos(x+kπ2)exn=0f(n)(x)2n=exn=012n(k=0nCnkcos(x+kπ2))k=0nCnkcos(x+kπ2)=Re(k=0nCnkei(x+kπ2))k=0n()=eixk=0nCnk(i)k=eix(1+i)n=eix(2)n(eiπ4)n=(2)neixeinπ4=(2)nei(x+nπ4)k=0nCnkcos(x+kπ2)=(2)ncos(x+nπ4)n=0f(n)(x)2n=exn=0(22)ncos(x+nπ4)n=0(12)ncos(x+nπ4)=Re(n=0(12)nei(x+nπ4))Σ()=eixn=0(12)n(eiπ4)n=eixn=0(eiπ42)n=eix×1112eiπ4=2eix212i2=2eix1i=2eix(1+i)2=eix2eiπ4=2ei(x+π4)Re(.)=2cos(x+π4)n=0f(n)(x)2n=2excos(x+π4)

Leave a Reply

Your email address will not be published. Required fields are marked *