Menu Close

let-f-x-e-x-cosx-developp-f-at-fourier-serie-1-find-the-value-of-n-1-n-1-n-2-2-calculate-n-0-1-n-2-1-




Question Number 38209 by prof Abdo imad last updated on 22/Jun/18
let f(x)=e^(−x) cosx  developp f at fourier serie  1) find the value of Σ_(n=−∞) ^(+∞)  (((−1)^n )/(1+n^2 ))  2) calculate Σ_(n=0) ^∞   (1/(n^2  +1)) .
letf(x)=excosxdeveloppfatfourierserie1)findthevalueofn=+(1)n1+n22)calculaten=01n2+1.
Commented by math khazana by abdo last updated on 25/Jun/18
f(x)=Σ_(n=−∞) ^(+∞)  c_n e^(inx)   with  c_n =(1/T)∫_([T]) f(x)e^(−inx) dx  = (1/(2π)) ∫_(−π) ^π   e^((−1−in)x) cosx dx  2π c_n = Re( ∫_(−π) ^π   e^((−1−in +i)x) dx) but   ∫_(−π) ^π    e^(−(1+(n−1)i)x) dx=[ (1/(−(1+(n−1)i)))e^(−(1+(n−1)i)x) ]_(−π) ^π   =((−1)/(1+(n−1)i)) { e^(−π) (−1)^(n−1)  −e^π  (−1)^(n−1) }  =(((−1)^(n−1) 2i sh(π)(1−(n−1)i))/(1+(n−1)^2 ))  =((2ish(π)(−1)^(n−1)  +2sh(π)(−1)^(n−1) )/((n−1)^2  +1)) ⇒  2πc_n = ((2sh(π)(−1)^(n−1) )/((n−1)^2  +1)) ⇒  c_n =  (((−1)^(n−1)  sh(π))/(π{ (n−1)^2  +1}))  ⇒  f(x)= Σ_(n=−∞) ^(+∞)   (((−1)^(n−1)  sh(π))/(π{ (n−1)^2  +1})) e^(inx)   =((sh(π))/π) Σ_(n=−∞) ^(+∞)   (((−1)^(n−1) )/((n−1)^2  +1)) e^(inx)  =e^(−x) cosx
f(x)=n=+cneinxwithcn=1T[T]f(x)einxdx=12πππe(1in)xcosxdx2πcn=Re(ππe(1in+i)xdx)butππe(1+(n1)i)xdx=[1(1+(n1)i)e(1+(n1)i)x]ππ=11+(n1)i{eπ(1)n1eπ(1)n1}=(1)n12ish(π)(1(n1)i)1+(n1)2=2ish(π)(1)n1+2sh(π)(1)n1(n1)2+12πcn=2sh(π)(1)n1(n1)2+1cn=(1)n1sh(π)π{(n1)2+1}f(x)=n=+(1)n1sh(π)π{(n1)2+1}einx=sh(π)πn=+(1)n1(n1)2+1einx=excosx
Commented by math khazana by abdo last updated on 25/Jun/18
2)f(0)=1 = ((sh(π))/π) Σ_(n=−∞) ^(+∞)  (((−1)^(n−1) )/((n−1)^2  +1))  =_(n−1=p)    ((sh(π))/π) Σ_(p=−∞) ^(+∞)   (((−1)^p )/(p^2  +1)) ⇒  Σ_(p=−∞) ^(+∞)    (((−1)^p )/(p^2  +1)) = (π/(sh(π))) .  3) f(π) = −e^(−π)  = −((sh(π))/π) Σ_(n=−∞) ^(+∞)  (1/((n−1)^2  +1))  ⇒Σ_(n=−∞) ^(+∞)    (1/(n^2  +1)) = ((π e^(−π) )/(sh(π))) .
2)f(0)=1=sh(π)πn=+(1)n1(n1)2+1=n1=psh(π)πp=+(1)pp2+1p=+(1)pp2+1=πsh(π).3)f(π)=eπ=sh(π)πn=+1(n1)2+1n=+1n2+1=πeπsh(π).

Leave a Reply

Your email address will not be published. Required fields are marked *