let-f-x-e-x-cosx-developp-f-at-fourier-serie-1-find-the-value-of-n-1-n-1-n-2-2-calculate-n-0-1-n-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 38209 by prof Abdo imad last updated on 22/Jun/18 letf(x)=e−xcosxdeveloppfatfourierserie1)findthevalueof∑n=−∞+∞(−1)n1+n22)calculate∑n=0∞1n2+1. Commented by math khazana by abdo last updated on 25/Jun/18 f(x)=∑n=−∞+∞cneinxwithcn=1T∫[T]f(x)e−inxdx=12π∫−ππe(−1−in)xcosxdx2πcn=Re(∫−ππe(−1−in+i)xdx)but∫−ππe−(1+(n−1)i)xdx=[1−(1+(n−1)i)e−(1+(n−1)i)x]−ππ=−11+(n−1)i{e−π(−1)n−1−eπ(−1)n−1}=(−1)n−12ish(π)(1−(n−1)i)1+(n−1)2=2ish(π)(−1)n−1+2sh(π)(−1)n−1(n−1)2+1⇒2πcn=2sh(π)(−1)n−1(n−1)2+1⇒cn=(−1)n−1sh(π)π{(n−1)2+1}⇒f(x)=∑n=−∞+∞(−1)n−1sh(π)π{(n−1)2+1}einx=sh(π)π∑n=−∞+∞(−1)n−1(n−1)2+1einx=e−xcosx Commented by math khazana by abdo last updated on 25/Jun/18 2)f(0)=1=sh(π)π∑n=−∞+∞(−1)n−1(n−1)2+1=n−1=psh(π)π∑p=−∞+∞(−1)pp2+1⇒∑p=−∞+∞(−1)pp2+1=πsh(π).3)f(π)=−e−π=−sh(π)π∑n=−∞+∞1(n−1)2+1⇒∑n=−∞+∞1n2+1=πe−πsh(π). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-dx-2x-1-4-x-3-5-Next Next post: let-f-a-0-pi-d-a-sin-2-a-from-R-1-find-f-a-2-calculate-g-a-0-pi-d-a-sin-2-2-3-calculate-0-pi-d-1-sin-2-and-0-pi-d-2-sin-2-4-calculate-0 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.