Menu Close

let-f-x-e-x-n-with-n-fromN-developp-f-at-integr-serie-




Question Number 35234 by abdo.msup.com last updated on 17/May/18
let f(x) =e^(−x^n )      with n fromN  developp f at integr serie .
$${let}\:{f}\left({x}\right)\:={e}^{−{x}^{{n}} } \:\:\:\:\:{with}\:{n}\:{fromN} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by prof Abdo imad last updated on 18/May/18
we have e^(−u)  =Σ_(p=0) ^n  (((−1)^p u^p )/(p!))   with R=∞  so e^(−x^n )   =Σ_(p=0) ^n  (((−1)^p  x^(np) )/(p!))  .
$${we}\:{have}\:{e}^{−{u}} \:=\sum_{{p}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{p}} {u}^{{p}} }{{p}!}\:\:\:{with}\:{R}=\infty \\ $$$${so}\:{e}^{−{x}^{{n}} } \:\:=\sum_{{p}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{p}} \:{x}^{{np}} }{{p}!}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *