Menu Close

let-f-x-e-x-sinx-developp-f-at-integr-serie-




Question Number 34698 by abdo imad last updated on 10/May/18
let f(x)=e^x  sinx  .developp f at integr serie.
letf(x)=exsinx.developpfatintegrserie.
Commented by abdo mathsup 649 cc last updated on 10/May/18
f(x)=Im( e^x e^(ix) ) = Im( e^((1+i)x) ) but  e^((1+i)x)   = Σ_(n=0) ^∞   (((1+i)^n )/(n!)) x^n   = Σ_(n=0) ^∞  (({(√2) e^(i(π/4)) }^n )/(n!)) x^n     =Σ_(n=0) ^∞   ((((√2))^n  e^(in(π/4)) )/(n!)) x^n  ⇒  f(x)= Σ_(n=0) ^∞   ((((√2))^n )/(n!)) sin(n(π/4)) x^n  .
f(x)=Im(exeix)=Im(e(1+i)x)bute(1+i)x=n=0(1+i)nn!xn=n=0{2eiπ4}nn!xn=n=0(2)neinπ4n!xnf(x)=n=0(2)nn!sin(nπ4)xn.
Commented by abdo mathsup 649 cc last updated on 10/May/18
another method  we have?f(x)= Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n     but leibniz  formula give f^((n)) (x)= Σ_(k=0) ^n  C_n ^k   (sinx)^((k))  (e^x )^((n−k))   = Σ_(k=0) ^n   C_n ^k   sin(x+k(π/2)) e^x  ⇒  f^((n)) (0) = Σ_(k=0) ^n  C_n ^k   sin( k(π/2))⇒  f(x) = Σ_(n=0) ^∞   (1/(n!))( Σ_(k=0) ^n  C_n ^k  sin(k(π/2))) x^n   .
anothermethodwehave?f(x)=n=0f(n)(0)n!xnbutleibnizformulagivef(n)(x)=k=0nCnk(sinx)(k)(ex)(nk)=k=0nCnksin(x+kπ2)exf(n)(0)=k=0nCnksin(kπ2)f(x)=n=01n!(k=0nCnksin(kπ2))xn.
Answered by tanmay.chaudhury50@gmail.com last updated on 10/May/18
p=e^x cosx   q=e^x sinx  p+iq=e^x cosx+ie^x sinx  =e^x .e^(ix)   =e^(x(1+i))    =x(1+i)+((x^2 .(1+i)^2 )/(2!))+((x^3 (1+i)^3 )/(3!))+((x^4 (1+i)^4 )/(4!))+...  =(x+ix)+(((i2x^2 ))/(2!))+x^3 (1+3i−3−i)/3! +x^4 (((−4))/(4−!))+..  so e^x sinx=  x+((2x^2 )/(2!))+x^3 (2/(3!))+....
p=excosxq=exsinxp+iq=excosx+iexsinx=ex.eix=ex(1+i)=x(1+i)+x2.(1+i)22!+x3(1+i)33!+x4(1+i)44!+=(x+ix)+(i2x2)2!+x3(1+3i3i)/3!+x4(4)4!+..soexsinx=x+2x22!+x323!+.

Leave a Reply

Your email address will not be published. Required fields are marked *