Menu Close

let-f-x-e-x-sinx-odd-2pi-periodic-developp-f-at-fourier-serie-




Question Number 35620 by abdo mathsup 649 cc last updated on 21/May/18
let  f(x) =e^(−x)  sinx   odd 2π periodic   developp f at fourier serie .
letf(x)=exsinxodd2πperiodicdeveloppfatfourierserie.
Commented by abdo mathsup 649 cc last updated on 25/May/18
we have f(x)=Σ_(n=1) ^∞  a_n  sin(nx) with  a_n = (2/T) ∫_([T])  f(x)sin(nx)dx  =(2/(2π)) ∫_(−π) ^π   e^(−x)  sinx sin(nx)dx  = (2/π) ∫_0 ^π  e^(−x)  sin(nx)sin(x)dx  cos(a+b) =cosa cosb −sinasinb  cos(a−b)=cosa cosb +sina sinb ⇒I  sina sinb =(1/2){cos(a−b)−cos(a+b)}  π a_n  = ∫_0 ^π   ( e^(−x) cos(n−1)x −e^(−x)  cos(n+1)x) but  I(λ) = ∫_0 ^π   e^(−x)  cos(λx)dx  =Re( ∫_0 ^π  e^(−x)  e^(iλx) dx) =Re( ∫_0 ^π  e^((−1+iλ)x) dx)  ∫_0 ^π    e^((−1+iλ)x) dx = [(1/(−1+iλ)) e^((−1+iλ)x) ]_0 ^π   =((−1)/(1−iλ)){ e^((−1+iλ)π)  −1}  =((−1−iλ)/(1+λ^2 )) { e^(−π) (cos(λπ) +isin(λπ) −1}  =−(((1+iλ){ e^(−π)  cos(λπ)−1 +i e^(−π)  sin(λπ)})/(1+λ^2 ))  =−(1/(1+λ^2 )){  e^(−π) cos(λπ) −1 +i e^(−π)  sin(λπ)  +iλ e^(−π)  cos(λπ) −iλ −λ e^(−π)  sin(λπ)}−⇒  I(λ) =((−1)/(1+λ^2 )){ e^(−π)  cos(λπ) −λ e^(−π)  sin(λπ) −1}  I(n−1)= ((−1)/(1+(n−1)^2 )){ e^(−π)  cos(n−1)π  −(n−1) e^(−π)  sin(n−1)π −1}  =((−1)/(1+(n−1)^2 )){ (−1)^(n−1)  e^(−π)  −1} = (((−1)^n  e^(−π)  +1)/(1+(n−1)^2 ))  I(n) = ((−1)/(1+n^2 )){ (−1)^n  e^(−π)  −1}=((1−(−1)^n  e^(−π) )/(1+n^2 ))  π a_n  = I(n−1)−I(n)= ((1+(−1)^n  e^(−π) )/(1+(n−1)^2 ))  −((1 −(−1)^n  e^(−π) )/(1+n^2 )) ⇒  e^(−x)  sinx =Σ_(n=1) ^∞  (1/π){  ((1+(−1)^n  e^(−π) )/(1+(n−1)^2 )) +(((−1)^n e^(−π)  −1)/(1+n^2 ))}sin(nx)
wehavef(x)=n=1ansin(nx)withan=2T[T]f(x)sin(nx)dx=22πππexsinxsin(nx)dx=2π0πexsin(nx)sin(x)dxcos(a+b)=cosacosbsinasinbcos(ab)=cosacosb+sinasinbIsinasinb=12{cos(ab)cos(a+b)}πan=0π(excos(n1)xexcos(n+1)x)butI(λ)=0πexcos(λx)dx=Re(0πexeiλxdx)=Re(0πe(1+iλ)xdx)0πe(1+iλ)xdx=[11+iλe(1+iλ)x]0π=11iλ{e(1+iλ)π1}=1iλ1+λ2{eπ(cos(λπ)+isin(λπ)1}=(1+iλ){eπcos(λπ)1+ieπsin(λπ)}1+λ2=11+λ2{eπcos(λπ)1+ieπsin(λπ)+iλeπcos(λπ)iλλeπsin(λπ)}I(λ)=11+λ2{eπcos(λπ)λeπsin(λπ)1}I(n1)=11+(n1)2{eπcos(n1)π(n1)eπsin(n1)π1}=11+(n1)2{(1)n1eπ1}=(1)neπ+11+(n1)2I(n)=11+n2{(1)neπ1}=1(1)neπ1+n2πan=I(n1)I(n)=1+(1)neπ1+(n1)21(1)neπ1+n2exsinx=n=11π{1+(1)neπ1+(n1)2+(1)neπ11+n2}sin(nx)

Leave a Reply

Your email address will not be published. Required fields are marked *