let-f-x-e-x-sinx-odd-2pi-periodic-developp-f-at-fourier-serie- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35620 by abdo mathsup 649 cc last updated on 21/May/18 letf(x)=e−xsinxodd2πperiodicdeveloppfatfourierserie. Commented by abdo mathsup 649 cc last updated on 25/May/18 wehavef(x)=∑n=1∞ansin(nx)withan=2T∫[T]f(x)sin(nx)dx=22π∫−ππe−xsinxsin(nx)dx=2π∫0πe−xsin(nx)sin(x)dxcos(a+b)=cosacosb−sinasinbcos(a−b)=cosacosb+sinasinb⇒Isinasinb=12{cos(a−b)−cos(a+b)}πan=∫0π(e−xcos(n−1)x−e−xcos(n+1)x)butI(λ)=∫0πe−xcos(λx)dx=Re(∫0πe−xeiλxdx)=Re(∫0πe(−1+iλ)xdx)∫0πe(−1+iλ)xdx=[1−1+iλe(−1+iλ)x]0π=−11−iλ{e(−1+iλ)π−1}=−1−iλ1+λ2{e−π(cos(λπ)+isin(λπ)−1}=−(1+iλ){e−πcos(λπ)−1+ie−πsin(λπ)}1+λ2=−11+λ2{e−πcos(λπ)−1+ie−πsin(λπ)+iλe−πcos(λπ)−iλ−λe−πsin(λπ)}−⇒I(λ)=−11+λ2{e−πcos(λπ)−λe−πsin(λπ)−1}I(n−1)=−11+(n−1)2{e−πcos(n−1)π−(n−1)e−πsin(n−1)π−1}=−11+(n−1)2{(−1)n−1e−π−1}=(−1)ne−π+11+(n−1)2I(n)=−11+n2{(−1)ne−π−1}=1−(−1)ne−π1+n2πan=I(n−1)−I(n)=1+(−1)ne−π1+(n−1)2−1−(−1)ne−π1+n2⇒e−xsinx=∑n=1∞1π{1+(−1)ne−π1+(n−1)2+(−1)ne−π−11+n2}sin(nx) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: integrate-the-e-d-y-x-1-y-e-x-sinx-with-y-0-1-Next Next post: calculate-S-x-n-0-x-3n-3n-1-after-finding-the-radius-of-convergence-2-find-the-value-of-n-0-1-3n-1-8-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.