Menu Close

let-f-x-e-x-x-1-1-calculate-f-n-o-and-f-n-1-2-developp-f-at-integr-serie-




Question Number 49804 by maxmathsup by imad last updated on 10/Dec/18
let f(x) =(e^(−x) /(x+1))  1) calculate  f^((n)) (o) and f^((n)) (1)  2) developp f at integr serie .
letf(x)=exx+11)calculatef(n)(o)andf(n)(1)2)developpfatintegrserie.
Commented by Abdo msup. last updated on 11/Dec/18
1) letfirst find  f^((n)) (x)  f^((n)) (x) =((1/(x+1)) e^(−x) )^((n))  leibniz formula give  f^((n)) (x) = Σ_(k=0) ^n  C_n ^k  ((1/(x+1)))^((k{) (e^(−x) )^((n−k))   =Σ_(k=0) ^n  C_n ^k   (((−1)^k k!)/((x+1)^(k+1) )) (−1)^(n−k)  e^(−x)   =(−1)^n  Σ_(k=0) ^n  ((k! C_n ^k )/((x+1)^(k+1) )) e^(−x)   =(−1)^n  Σ_(k=0) ^n     ((n!)/((n−k)!))  (e^(−x) /((x+1)^(k+1) )) ⇒  f^((n)) (0) =n!(−1)^n  Σ_(k=0) ^n  (1/((n−k)!))  and  f^((n)) (1) =n!(−1)^n  Σ_(k=0) ^n    (1/((n−k)!)) (e^(−1) /2^(k+1) ) .  2) f(x) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞    (−1)^n (Σ_(k=0) ^n  (1/((n−k)!:)))x^n   but   Σ_(k=0) ^n    (1/((n−k)!)) =_(n−k=p)    Σ_(p=0) ^n  (1/(p!)) ⇒  f(x) =Σ_(n=0) ^∞  (−1)^n (Σ_(p=0) ^n  (1/(p!))) x^(n )   .
1)letfirstfindf(n)(x)f(n)(x)=(1x+1ex)(n)leibnizformulagivef(n)(x)=k=0nCnk(1x+1)(k{(ex)(nk)=k=0nCnk(1)kk!(x+1)k+1(1)nkex=(1)nk=0nk!Cnk(x+1)k+1ex=(1)nk=0nn!(nk)!ex(x+1)k+1f(n)(0)=n!(1)nk=0n1(nk)!andf(n)(1)=n!(1)nk=0n1(nk)!e12k+1.2)f(x)=n=0f(n)(0)n!xn=n=0(1)n(k=0n1(nk)!:)xnbutk=0n1(nk)!=nk=pp=0n1p!f(x)=n=0(1)n(p=0n1p!)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *