Menu Close

let-f-x-e-x-x-2-4-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 46424 by maxmathsup by imad last updated on 25/Oct/18
let f(x)=(e^(−x) /(x^2 +4))  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie .
letf(x)=exx2+41)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 27/Oct/18
1) we have f(x)=(e^(−x) /((x−2i)(x+2i))) =(1/(4i))e^(−x) { (1/(x−2i)) −(1/(x+2i))}  =(1/(4i)){(e^(−x) /(x−2i)) −(e^(−x) /(x+2i))} ⇒f^((n)) (x)=(1/(4i)){ ((e^(−x) /(x−2i)))^((n))  −((e^(−x) /(x+2i)))^((n)) }  leibniz formulae give   ((e^(−x) /(x−2i)))^((n))  =Σ_(k=0) ^n  C_n ^k  ((1/(x−2i)))^((k))  (e^(−x) )^((n−k))   =Σ_(k=0) ^n  C_n ^k  (((−1)^k k!)/((x−2i)^(k+1) )) (−1)^(n−k)  e^(−x )   also we have   ((e^(−x) /(x+2i)))^((n))  =Σ_(k=0) ^n  C_n ^k   (((−1)^k  k!)/((x+2i)^(k+1) )) (−1)^(n−k)  e^(−x)  ⇒  f^((n)) (x)=(1/(4i)) Σ_(k=0) ^n  (−1)^n  C_n ^k  k!{(1/((x−2i)^(k+1) )) −(1/((x+2i)^(k+1) ))}e^(−x)   =(1/(4i)) Σ_(k=0) ^n  (−1)^n   ((n!)/((n−k)!)) (((x+2i)^(k+1) −(x−2i)^(k+1) )/((x^2  +4)^(k+1) )) e^(−x)
1)wehavef(x)=ex(x2i)(x+2i)=14iex{1x2i1x+2i}=14i{exx2iexx+2i}f(n)(x)=14i{(exx2i)(n)(exx+2i)(n)}leibnizformulaegive(exx2i)(n)=k=0nCnk(1x2i)(k)(ex)(nk)=k=0nCnk(1)kk!(x2i)k+1(1)nkexalsowehave(exx+2i)(n)=k=0nCnk(1)kk!(x+2i)k+1(1)nkexf(n)(x)=14ik=0n(1)nCnkk!{1(x2i)k+11(x+2i)k+1}ex=14ik=0n(1)nn!(nk)!(x+2i)k+1(x2i)k+1(x2+4)k+1ex
Commented by maxmathsup by imad last updated on 27/Oct/18
x=0 ⇒f^((n)) (0) =(1/(4i)) Σ_(k=0) ^n (((−1)^n n!)/((n−k)!)) (((2i)^(k+1)  −(−2i)^(k+1) )/4^(k+1) )  =(1/(4i)) Σ_(k=0) ^n   (((−1)^n n!)/((n−k)!)) ((2i Im{(2i)^(k+1) })/4^(k+1) ) =(1/2) Σ_(k=0) ^n  (((−1)^n n!)/((n−k)!))  ((2^(k+1)  sin((((k+1)π)/2)))/2^(2k+2) )  = Σ_(k=0) ^n  (((−1)^n n!)/((n−k)!)) ((sin((((k+1)π)/2)))/2^(k+2) )
x=0f(n)(0)=14ik=0n(1)nn!(nk)!(2i)k+1(2i)k+14k+1=14ik=0n(1)nn!(nk)!2iIm{(2i)k+1}4k+1=12k=0n(1)nn!(nk)!2k+1sin((k+1)π2)22k+2=k=0n(1)nn!(nk)!sin((k+1)π2)2k+2
Commented by maxmathsup by imad last updated on 27/Oct/18
2) we have f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  ⇒  f(x) =Σ_(n=0) ^∞  (−1)^n ( Σ_(k=0) ^n  (1/((n−k)!)) ((sin((((k+1)π)/2)))/2^(k+2) ))x^n  .
2)wehavef(x)=n=0f(n)(0)n!xnf(x)=n=0(1)n(k=0n1(nk)!sin((k+1)π2)2k+2)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *