Question Number 21692 by Joel577 last updated on 01/Oct/17
$$\mathrm{Let}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{and} \\ $$$${x}^{\mathrm{2}} \:−\:\mathrm{2}{x}\:+\:\mathrm{3}\:\leqslant\:{f}\left({x}\right)\:\leqslant\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{4}{x}\:+\:\mathrm{4} \\ $$$$\mathrm{for}\:\mathrm{every}\:\:{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{If}\:{f}\left(\mathrm{5}\right)\:=\:\mathrm{26},\:\mathrm{then}\:{f}\left(\mathrm{7}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:… \\ $$$$ \\ $$$$\left({A}\right)\:\mathrm{38}\:\:\:\:\:\:\:\:\:\left({D}\right)\:\mathrm{74} \\ $$$$\left({B}\right)\:\mathrm{50}\:\:\:\:\:\:\:\:\:\left({E}\right)\:\mathrm{92} \\ $$$$\left({C}\right)\:\mathrm{56} \\ $$
Answered by mrW1 last updated on 01/Oct/17
$$\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{3}=\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{4}=\mathrm{2}\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{a}\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\:\mathrm{with}\:\mathrm{1}\leqslant\mathrm{a}\leqslant\mathrm{2} \\ $$$$\mathrm{f}\left(\mathrm{5}\right)=\mathrm{a}\left(\mathrm{5}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}=\mathrm{26} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{7}\right)=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{7}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}=\mathrm{3}×\mathrm{18}+\mathrm{2}=\mathrm{56} \\ $$$$\mathrm{Answer}\:\left(\mathrm{C}\right) \\ $$
Commented by Joel577 last updated on 01/Oct/17
$${thank}\:{you}\:{very}\:{much} \\ $$