Menu Close

let-f-x-ln-1-e-x-developp-f-at-integr-serie-




Question Number 38725 by maxmathsup by imad last updated on 28/Jun/18
let f(x)=ln(1+ e^(−x) )  developp f at integr serie .
$${let}\:{f}\left({x}\right)={ln}\left(\mathrm{1}+\:{e}^{−{x}} \right)\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by abdo.msup.com last updated on 29/Jun/18
we have ln(1+u) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n ⇒  ln(1+e^(−x) ) =Σ_(n=1) ^∞   (((−1)^n )/n) e^(−nx)   =Σ_(n=1) ^∞  (((−1)^n )/(n!)) Σ_(p=0) ^∞  (((−nx)^p )/(p!))  =Σ_(n=1) ^∞    (((−1)^n )/(n!)){Σ_(p=0) ^∞ (((−n)^p )/(p!))x^p }.
$${we}\:{have}\:{ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \Rightarrow \\ $$$${ln}\left(\mathrm{1}+{e}^{−{x}} \right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{e}^{−{nx}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−{nx}\right)^{{p}} }{{p}!} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\left\{\sum_{{p}=\mathrm{0}} ^{\infty} \frac{\left(−{n}\right)^{{p}} }{{p}!}{x}^{{p}} \right\}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *