Menu Close

let-f-x-ln-1-e-x-developp-f-at-integr-serie-




Question Number 38725 by maxmathsup by imad last updated on 28/Jun/18
let f(x)=ln(1+ e^(−x) )  developp f at integr serie .
letf(x)=ln(1+ex)developpfatintegrserie.
Commented by abdo.msup.com last updated on 29/Jun/18
we have ln(1+u) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n ⇒  ln(1+e^(−x) ) =Σ_(n=1) ^∞   (((−1)^n )/n) e^(−nx)   =Σ_(n=1) ^∞  (((−1)^n )/(n!)) Σ_(p=0) ^∞  (((−nx)^p )/(p!))  =Σ_(n=1) ^∞    (((−1)^n )/(n!)){Σ_(p=0) ^∞ (((−n)^p )/(p!))x^p }.
wehaveln(1+u)=n=1(1)n1nxnln(1+ex)=n=1(1)nnenx=n=1(1)nn!p=0(nx)pp!=n=1(1)nn!{p=0(n)pp!xp}.

Leave a Reply

Your email address will not be published. Required fields are marked *