Menu Close

let-f-x-ln-1-ix-2-1-extrsct-Re-f-x-and-Im-f-x-2-developp-f-at-integr-serie-3-calculate-f-x-by-two-methods-




Question Number 34770 by abdo mathsup 649 cc last updated on 10/May/18
let f(x)= ln(1+ix^2 )  1) extrsct Re(f(x)) and Im(f(x))  2) developp f at integr serie  3) calculate f^′ (x) by two methods
letf(x)=ln(1+ix2)1)extrsctRe(f(x))andIm(f(x))2)developpfatintegrserie3)calculatef(x)bytwomethods
Commented by abdo mathsup 649 cc last updated on 13/May/18
1) we have proved that  f(x)=(1/2)ln(1+x^4 ) +i arctan(x^2 ) ⇒  Re(f(x))= (1/2)ln(1+x^4 ) and Im(f(x))= arctan(x^2 )  2) for ∣u∣<1 ln(1+u) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  ⇒  (1/2)ln(1+x^4 ) = (1/2) Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^(4n)   (d/dx)(arctanu)= (1/(1+u^2 )) = Σ_(n=0) ^∞   (−1)^n  u^(2n) ⇒  arctanu  =Σ_(n=0) ^∞   (((−1)^n )/(2n+1))u^(2n+1)  ⇒  arctan(x^2 ) = Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) x^(4n+2)    so   f(x)= (1/2) Σ_(n=1) ^∞   (((−1)^(n−1) )/n) x^(4n)    +i Σ_(n=0) ^∞    (((−1)^n )/(2n+1)) x^(4n+2)   the radius of convergence is R =1
1)wehaveprovedthatf(x)=12ln(1+x4)+iarctan(x2)Re(f(x))=12ln(1+x4)andIm(f(x))=arctan(x2)2)foru∣<1ln(1+u)=n=1(1)n1nxn12ln(1+x4)=12n=1(1)n1nx4nddx(arctanu)=11+u2=n=0(1)nu2narctanu=n=0(1)n2n+1u2n+1arctan(x2)=n=0(1)n2n+1x4n+2sof(x)=12n=1(1)n1nx4n+in=0(1)n2n+1x4n+2theradiusofconvergenceisR=1
Commented by abdo mathsup 649 cc last updated on 13/May/18
3) we have f(x)=(1/2)ln(1+x^4 ) +i arctan(x^2 ) ⇒  f^′ (x) =  ((2x^3 )/(1+x^4 ))  + i((2x)/(1+x^4 )) =((2x)/(1+x^4 ))( x^2  +i)  another method  f(x) =ln(1+ix^2 ) ⇒f^′ (x) = ((2ix)/(1+ix^2 ))  = ((2ix( 1−ix^2 ))/(1+x^4 )) = ((2ix  +2x^3 )/(1+x^4 )) = ((2x^3 )/(1+x^4 )) +i((2x)/(1+x^4 ))  .
3)wehavef(x)=12ln(1+x4)+iarctan(x2)f(x)=2x31+x4+i2x1+x4=2x1+x4(x2+i)anothermethodf(x)=ln(1+ix2)f(x)=2ix1+ix2=2ix(1ix2)1+x4=2ix+2x31+x4=2x31+x4+i2x1+x4.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/May/18
ln(1+ix^2 )=(1/2)ln{1^2 +(x^2 )^2 }+itan^(−1) (x^2 /1)  =(1/2)(x^4 −(((x^4 )^2 )/2)+(((x^4 )^3 )/3)....)+i(x^2 −(((x^2 )^3 )/3)+(((x^2 )^5 )/5)...)  =(1/2)(x^4 −(x^8 /2)+(x^(12) /3)....)+i(x^2 −(x^6 /3)+(x^(10) /5)−....)
ln(1+ix2)=12ln{12+(x2)2}+itan1(x2/1)=12(x4(x4)22+(x4)33.)+i(x2(x2)33+(x2)55)=12(x4x82+x123.)+i(x2x63+x105.)
Commented by tanmay.chaudhury50@gmail.com last updated on 11/May/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/May/18

Leave a Reply

Your email address will not be published. Required fields are marked *