Menu Close

let-f-x-ln-1-ix-with-x-lt-1-1-extract-Re-f-x-and-Im-f-x-2-developp-f-x-at-integr-serie-




Question Number 34634 by abdo mathsup 649 cc last updated on 09/May/18
let f(x)=ln(1+ix) with ∣x∣<1  1) extract Re(f(x)) and Im(f(x))  2) developp f(x) at integr serie.
letf(x)=ln(1+ix)withx∣<11)extractRe(f(x))andIm(f(x))2)developpf(x)atintegrserie.
Commented by math khazana by abdo last updated on 10/May/18
1)we have 1+ix=(√(1+x^2 ))(  (1/( (√(1+x^2 )))) +i (x/( (√(1+x^2 )))))  = r e^(iθ)   ⇒r=(√(1+x^2  ))  and  cosθ =(1/( (√(1+x^2 )))) ,  sinθ =(x/( (√(1+x^2 )))) ⇒tanθ =x ⇒θ=arctanx ⇒  ln(1+ix) =ln(√(1+x^2  )) +i arctan x  =(1/2)ln(1+x^2 ) +i arc tanx ⇒  Re(f(x))=(1/2)ln(1+x^2 )  and Im(f(x))= artanx  2) we have ln^′ (1+u) = (1/(1+u)) =Σ_(n=0) ^∞ (−1)^n  u^n   ⇒ ln(1+u) = Σ_(n=0) ^∞   (((−1)^n )/(n+1))u^(n+1)  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n)u^n   ⇒ (1/2)ln(1+x^2 ) = Σ_(n=1) ^∞     (((−1)^(n−1) )/(2n)) x^(2n)      also  arctan^′ x  = (1/(1+x^2 ))  = Σ_(n=0) ^∞  (−1)^n  x^(2n)  ⇒  arctanx = Σ_(n=0) ^∞    (((−1)^n )/(2n+1)) x^(2n+1)    finally  f(x) = Σ_(n=1) ^∞   (((−1)^(n−1) )/(2n)) x^(2n)    +i  Σ_(n=0) ^∞   (((−1)^n )/(2n+1)) x^(2n+1)   .
1)wehave1+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andcosθ=11+x2,sinθ=x1+x2tanθ=xθ=arctanxln(1+ix)=ln1+x2+iarctanx=12ln(1+x2)+iarctanxRe(f(x))=12ln(1+x2)andIm(f(x))=artanx2)wehaveln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nn+1un+1=n=1(1)n1nun12ln(1+x2)=n=1(1)n12nx2nalsoarctanx=11+x2=n=0(1)nx2narctanx=n=0(1)n2n+1x2n+1finallyf(x)=n=1(1)n12nx2n+in=0(1)n2n+1x2n+1.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
ln(1+ix)=(1/2)ln(1^2 +x^2 )+itan^(−1) ((x/1))  =(1/2)ln(1+x^2 )+itan^(−1) (x)  ln(1+t)=t−(t^2 /2)+(t^3 /3)−(t^4 /4)+....  tan^(−1) (x)=x−(x^3 /3)+(x^5 /5)−....  so required ans is  =(1/2)(x^2 −(x^4 /2)+(x^6 /3)−(x^8 /4)...)+i(x−(x^3 /3)+(x^5 /5)−....)
ln(1+ix)=12ln(12+x2)+itan1(x1)=12ln(1+x2)+itan1(x)ln(1+t)=tt22+t33t44+.tan1(x)=xx33+x55.sorequiredansis=12(x2x42+x63x84)+i(xx33+x55.)

Leave a Reply

Your email address will not be published. Required fields are marked *