Menu Close

let-f-x-ln-1-x-2-x-2-1-calculate-f-n-x-2-calculate-f-n-0-3-developp-f-x-at-integr-serie-




Question Number 57486 by Abdo msup. last updated on 05/Apr/19
let f(x) =((ln(1+x))/(2−x^2 ))  1)calculate f^((n)) (x)    2) calculate f^((n)) (0)  3)developp f(x) at integr serie.
letf(x)=ln(1+x)2x21)calculatef(n)(x)2)calculatef(n)(0)3)developpf(x)atintegrserie.
Commented by maxmathsup by imad last updated on 07/Apr/19
1) we have f(x)=−((ln(1+x))/((x−(√2))(x+(√2)))) =−(1/(2(√2))){(1/(x−(√2))) −(1/(x+(√2))))ln(1+x)  = (1/(2(√2))){ ((ln(1+x))/(x−(√2))) −((ln(1+x))/(x+(√2)))} ⇒f^((n)) (x) =(1/(2(√2))){  (((ln(1+x))/(x−(√2))))^n  −(((ln(1+x))/(x+(√2))))^((n)) }  let determine (((ln(1+x))/(x−(√2))))^((n))   leibniz formula give  (((ln(1+x))/(x−(√2))))^((n))  =Σ_(k=0) ^n  C_n ^k   (ln(1+x))^((k)) ((1/(x−(√2))))^((n−k))   (ln(1+x))^((1) )  =(1/(1+x)) ⇒(ln(1+x))^()k))  =((1/(1+x)))^((k−1))  =(((−1)^(k−1) (k−1)!)/((x+1)^k )) ⇒  (((ln(1+x))/(x−(√2))))^((n))  =ln(1+x)(((−1)^n n!)/((x−(√2))^(n+1) )) +Σ_(k=1) ^n   C_n ^k   (((−1)^(k−1) (k−1)!)/((x+1)^k )) (((−1)^(n−k) (n−k)!)/((x−(√2))^(n−k+1) ))  =(−1)^n n!((ln(1+x))/((x−(√2))^(n+1) )) +Σ_(k=1) ^n   (−1)^(n−1) (k−1)!(n−k)! ((n!)/(k!(n−k)!(x+1)^k (x−(√2))^(n−k+1) ))  =(−1)^n n! ((ln(1+x))/((x−(√2))^(n+1) ))  +(−1)^(n−1) n! Σ_(k=1) ^n      (1/(k(x+1)^k (x−(√2))^(n−k +1) ))  also we have  (((ln(1+x))/(x+(√2))))^((n))  =(−1)^n n!((ln(1+x))/((x+(√2))^(n+1) )) +(−1)^(n−1) n! Σ_(k=1) ^n      (1/(k(x+1)^k (x+(√2))^(n−k+1) ))  so the value of f^((n)) (x) isdetermined .
1)wehavef(x)=ln(1+x)(x2)(x+2)=122{1x21x+2)ln(1+x)=122{ln(1+x)x2ln(1+x)x+2}f(n)(x)=122{(ln(1+x)x2)n(ln(1+x)x+2)(n)}letdetermine(ln(1+x)x2)(n)leibnizformulagive(ln(1+x)x2)(n)=k=0nCnk(ln(1+x))(k)(1x2)(nk)(ln(1+x))(1)=11+x(ln(1+x)))k)=(11+x)(k1)=(1)k1(k1)!(x+1)k(ln(1+x)x2)(n)=ln(1+x)(1)nn!(x2)n+1+k=1nCnk(1)k1(k1)!(x+1)k(1)nk(nk)!(x2)nk+1=(1)nn!ln(1+x)(x2)n+1+k=1n(1)n1(k1)!(nk)!n!k!(nk)!(x+1)k(x2)nk+1=(1)nn!ln(1+x)(x2)n+1+(1)n1n!k=1n1k(x+1)k(x2)nk+1alsowehave(ln(1+x)x+2)(n)=(1)nn!ln(1+x)(x+2)n+1+(1)n1n!k=1n1k(x+1)k(x+2)nk+1sothevalueoff(n)(x)isdetermined.
Commented by maxmathsup by imad last updated on 07/Apr/19
2) we have f^((n)) (0) =(1/(2(√2))){  (−1)^(n−1) n! Σ_(k=1) ^n     (1/(k(−(√2))^(n−k+1) ))  −(−1)^(n−1) n! Σ_(k=1) ^n      (1/(k((√2))^(n−k +1) ))}  =(((−1)^(n−1) n!)/(2(√2))){  Σ_(k=1) ^n   (1/k)(  (1/((−(√2))^(n−k +1) )) −(1/(((√2))^(n−k +1) )))}  =(((−1)^(n−1) n!)/(2(√2))) Σ_(k=1) ^n  (1/k)((((√2))^(n−k +1)  −(−(√2))^(n−k+1) )/((−2)^(n−k +1) ))  =(((−1)^(n−1) n!)/(2(√2)(−1)^(n+1) )) Σ_(k=1) ^n   ((((√2))^(n−k +1)  −(−(√2))^(n−k +1) )/2^(n−k +1) )(−1)^k  ⇒  f^((n)) (0) =((n!)/(2(√2))) Σ_(k=1) ^n (−1)^k    ((((√2))^(n−k+1)  −(−(√2))^(n−k +1) )/2^(n−k +1) ) .
2)wehavef(n)(0)=122{(1)n1n!k=1n1k(2)nk+1(1)n1n!k=1n1k(2)nk+1}=(1)n1n!22{k=1n1k(1(2)nk+11(2)nk+1)}=(1)n1n!22k=1n1k(2)nk+1(2)nk+1(2)nk+1=(1)n1n!22(1)n+1k=1n(2)nk+1(2)nk+12nk+1(1)kf(n)(0)=n!22k=1n(1)k(2)nk+1(2)nk+12nk+1.
Commented by maxmathsup by imad last updated on 07/Apr/19
3) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =Σ_(n=1) ^∞  ((f^((n)) (0))/(n!)) x^n      (f(0)=0)  f(x) =(1/(2(√2))) Σ_(n=1) ^∞ { Σ_(k=1) ^n  (−1)^k  ((((√2))^(n−k+1)  −(−(√2))^(n−k+1) )/2^(n−k+1) )} x^n  .
3)f(x)=n=0f(n)(0)n!xn=n=1f(n)(0)n!xn(f(0)=0)f(x)=122n=1{k=1n(1)k(2)nk+1(2)nk+12nk+1}xn.
Commented by maxmathsup by imad last updated on 07/Apr/19
forgive error of sine   f(x) =(1/(2(√2))){ ((ln(1+x))/(x+(√2))) −((ln(1+x))/(x−(√2)))}
forgiveerrorofsinef(x)=122{ln(1+x)x+2ln(1+x)x2}

Leave a Reply

Your email address will not be published. Required fields are marked *