Menu Close

let-f-x-ln-1-x-2-x-2-3-determine-f-n-x-and-developp-f-at-integr-serie-




Question Number 120288 by Bird last updated on 30/Oct/20
let f(x)=((ln(1+x^2 ))/(x^2 +3))  determine f^((n)) (x)  and developp f at integr serie
$${let}\:{f}\left({x}\right)=\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$${determine}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$${and}\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$
Commented by TITA last updated on 30/Oct/20
is it f^′ (x)?
$${is}\:{it}\:{f}^{'} \left({x}\right)? \\ $$
Answered by TITA last updated on 30/Oct/20
f^′ (x)=(((x^2 +3)(((2x)/(1+x^2 )))−[(ln (1+x^2 )(2x)])/((x^2 +3)^2 ))  f′(x)= (([(x^2 +3)(2x)]−[(1+x^2 )(ln (1+x^2 ))(2x)])/((1+x^2 )(x^2 +3)^2 ))
$${f}^{'} \left({x}\right)=\frac{\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)−\left[\left(\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{2}{x}\right)\right]\right.}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$$${f}'\left({x}\right)=\:\frac{\left[\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left(\mathrm{2}{x}\right)\right]−\left[\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)\left(\mathrm{2}{x}\right)\right]}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Commented by Bird last updated on 30/Oct/20
no f^((n)) (n^(eme)  derivstive!)
$${no}\:{f}^{\left({n}\right)} \left({n}^{{eme}} \:{derivstive}!\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *