Menu Close

let-f-x-ln-2-cosx-developp-f-at-fourier-serie-




Question Number 96655 by mathmax by abdo last updated on 03/Jun/20
let f(x) =ln(2+cosx) developp f at fourier serie
letf(x)=ln(2+cosx)developpfatfourierserie
Answered by mathmax by abdo last updated on 04/Jun/20
f(x) =ln(2+cosx) ⇒f^′ (x) =((−sinx)/(2+cosx)) =−(((e^(ix) −e^(−ix) )/(2i))/(2+((e^(ix)  +e^(−ix) )/2)))  =−(1/i) ×((e^(ix) −e^(−ix) )/(4 +e^(ix)  +e^(−ix) ))  changement  e^(ix)  =z give  f^′ (x) =i×((z−z^(−1) )/(4+z +z^(−1) )) =i×((z^2 −1)/(4z +z^2  +1)) =i×((z^2 −1)/(z^2 +4z +1))  let decompose  u(z) =((z^2 −1)/(z^2  +4z +1))  z^2  +4z +1 =0→Δ^′  =4−1 =3 ⇒z_1 =−2+(√3) and z_2 =−2−(√3)  u(z) =((z^2  +4z+1−4z−2)/(z^2  +4z +1)) =1−((4z+2)/(z^2  +4z +1)) =1−((4z+2)/((z−z_1 )(z−z_2 ))) =1−(a/(z−z_1 ))−(b/(z−z_2 ))  a =((4z_1  +2)/(z_1 −z_2 )) =((−8+4(√3)+2)/(2(√3))) =((−6+4(√3))/(2(√3))) =((−3+2(√3))/( (√3))) =−(√3)+2  b =((4z_2  +2)/(−2(√3))) =((−8−4(√3)+2)/(−2(√3))) =((−6−4(√3))/(−2(√3))) =((3+2(√3))/( (√3)))  =(√3) +2 ⇒  f^′ (x) =i {1−((2−(√3))/(z−z_1 )) −((2+(√3))/(z−z_2 ))} =i −(2−(√3))i×(1/(z−z_1 )) −(2+(√3))i×(1/(z−z_2 ))  =i +(((2−(√3))i)/(z_1 −z)) +(((2+(√3))i)/(z_2 −z)) =i +(((2−(√3))i)/z_1 )×(1/(1−(z/z_1 ))) +(((2+(√3))i)/z_2 )×(1/(1−(z/z_2 )))  =i −i×(1/(1−(z/z_1 ))) −i×(1/(1−(z/z_2 )))  so if ∣z∣<inf(∣z_1 ∣,∣z_2 ∣) we get  f^′ (x) =i−i Σ_(n=0) ^∞  (z^n /z_1 ^n ) −iΣ_(n=0) ^∞  (z^n /z_2 ^n ) =i−iΣ_(n=0) ^∞ ((1/z_1 ^n )+(1/z_2 ^n ))z^n   =i−iΣ_(n=0) ^∞ (((z_1 ^n  +z_2 ^n )/((z_1 z_2 )^n )))z^n   =i−i Σ_(n=0) ^∞  { (((−2+(√3))^n  +(−2−(√3))^n )/(−1))}z^n   =i +i Σ_(n=0) ^∞  {(−2+(√3))^n  +(−2−(√3))^n }z^n  ⇒  =i+iΣ_(n=0) ^∞  {(−2+(√3))^n  +(−2−(√3))^n }e^(inx)  ⇒  =i +i Σ_(n=) ^∞ {(−2+(√3))^n  +(−2−(√3))^n }(cos(nx)+i sin(nx)}  f^′ (x)real ⇒f^′ (x) =−Σ_(n=0) ^∞  {(−2+(√3))^n  +(−2−(√3))^n }sin(nx) ⇒  f(x) =Σ_(n=0) ^∞  ((((−2+(√3))^n  +(−2−(√3))^n )cos(nx))/n) +c  f(π) =0 =Σ_(n=0) ^∞  (((−1)^n )/n){(−2+(√3))^n  +(−2−(√3))^n } +c ⇒  c =−Σ_(n=0) ^∞  (((−1)^n )/n)((−2+(√3))^n  +(−2−(√3))^n  ⇒  f(x) =Σ_(n=0) ^∞  (({(−2+(√3))^n +(−2−(√3))^n )/n)(cos(nx)−(−1)^n   rest to study the case ∣z_1 ∣<∣z∣<∣z_2 ∣.
f(x)=ln(2+cosx)f(x)=sinx2+cosx=eixeix2i2+eix+eix2=1i×eixeix4+eix+eixchangementeix=zgivef(x)=i×zz14+z+z1=i×z214z+z2+1=i×z21z2+4z+1letdecomposeu(z)=z21z2+4z+1z2+4z+1=0Δ=41=3z1=2+3andz2=23u(z)=z2+4z+14z2z2+4z+1=14z+2z2+4z+1=14z+2(zz1)(zz2)=1azz1bzz2a=4z1+2z1z2=8+43+223=6+4323=3+233=3+2b=4z2+223=843+223=64323=3+233=3+2f(x)=i{123zz12+3zz2}=i(23)i×1zz1(2+3)i×1zz2=i+(23)iz1z+(2+3)iz2z=i+(23)iz1×11zz1+(2+3)iz2×11zz2=ii×11zz1i×11zz2soifz∣<inf(z1,z2)wegetf(x)=iin=0znz1nin=0znz2n=iin=0(1z1n+1z2n)zn=iin=0(z1n+z2n(z1z2)n)zn=iin=0{(2+3)n+(23)n1}zn=i+in=0{(2+3)n+(23)n}zn=i+in=0{(2+3)n+(23)n}einx=i+in={(2+3)n+(23)n}(cos(nx)+isin(nx)}f(x)realf(x)=n=0{(2+3)n+(23)n}sin(nx)f(x)=n=0((2+3)n+(23)n)cos(nx)n+cf(π)=0=n=0(1)nn{(2+3)n+(23)n}+cc=n=0(1)nn((2+3)n+(23)nf(x)=n=0{(2+3)n+(23)nn(cos(nx)(1)nresttostudythecasez1∣<∣z∣<∣z2.

Leave a Reply

Your email address will not be published. Required fields are marked *