let-f-x-ln-2-cosx-developp-f-at-fourier-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 96655 by mathmax by abdo last updated on 03/Jun/20 letf(x)=ln(2+cosx)developpfatfourierserie Answered by mathmax by abdo last updated on 04/Jun/20 f(x)=ln(2+cosx)⇒f′(x)=−sinx2+cosx=−eix−e−ix2i2+eix+e−ix2=−1i×eix−e−ix4+eix+e−ixchangementeix=zgivef′(x)=i×z−z−14+z+z−1=i×z2−14z+z2+1=i×z2−1z2+4z+1letdecomposeu(z)=z2−1z2+4z+1z2+4z+1=0→Δ′=4−1=3⇒z1=−2+3andz2=−2−3u(z)=z2+4z+1−4z−2z2+4z+1=1−4z+2z2+4z+1=1−4z+2(z−z1)(z−z2)=1−az−z1−bz−z2a=4z1+2z1−z2=−8+43+223=−6+4323=−3+233=−3+2b=4z2+2−23=−8−43+2−23=−6−43−23=3+233=3+2⇒f′(x)=i{1−2−3z−z1−2+3z−z2}=i−(2−3)i×1z−z1−(2+3)i×1z−z2=i+(2−3)iz1−z+(2+3)iz2−z=i+(2−3)iz1×11−zz1+(2+3)iz2×11−zz2=i−i×11−zz1−i×11−zz2soif∣z∣<inf(∣z1∣,∣z2∣)wegetf′(x)=i−i∑n=0∞znz1n−i∑n=0∞znz2n=i−i∑n=0∞(1z1n+1z2n)zn=i−i∑n=0∞(z1n+z2n(z1z2)n)zn=i−i∑n=0∞{(−2+3)n+(−2−3)n−1}zn=i+i∑n=0∞{(−2+3)n+(−2−3)n}zn⇒=i+i∑n=0∞{(−2+3)n+(−2−3)n}einx⇒=i+i∑n=∞{(−2+3)n+(−2−3)n}(cos(nx)+isin(nx)}f′(x)real⇒f′(x)=−∑n=0∞{(−2+3)n+(−2−3)n}sin(nx)⇒f(x)=∑n=0∞((−2+3)n+(−2−3)n)cos(nx)n+cf(π)=0=∑n=0∞(−1)nn{(−2+3)n+(−2−3)n}+c⇒c=−∑n=0∞(−1)nn((−2+3)n+(−2−3)n⇒f(x)=∑n=0∞{(−2+3)n+(−2−3)nn(cos(nx)−(−1)nresttostudythecase∣z1∣<∣z∣<∣z2∣. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: xcos-x-sin-x-x-2-sin-2-x-dx-Next Next post: show-the-converge-nce-and-calculate-1-1-1-t-1-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.