Menu Close

let-f-x-ln-2-x-1-give-D-n-0-of-f-2-developp-f-at-integr-serie-




Question Number 40113 by maxmathsup by imad last updated on 15/Jul/18
let f(x)=ln(2+x)  1) give D_n (0) of f  2) developp f at integr serie
letf(x)=ln(2+x)1)giveDn(0)off2)developpfatintegrserie
Commented by prof Abdo imad last updated on 17/Jul/18
1) we have f(x) =Σ_(k=0) ^n ((f^((k)) (0))/(k!)) x^k   + (x^(n+1) /((n+1)!))θ(x)  with lim_(x→0) θ(x)=0  but  f^′ (x)= (1/(x+2)) ⇒f^((k)) (x)=((1/(x+2)))^((k−1)) =(((−1)^(k−1) (k−1)!)/((x+2)^k ))  ⇒f^((k)) (0) = (((−1)^(k−1) (k−1)!)/(k!2^k )) for k≥1 ⇒  f(x) =ln(2) +Σ_(k=1) ^n   (((−1)^(k−1) )/(k2^k )) x^k   +(x^(n+1) /((n+1)!))θ(x)  2)f(x) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   = f(0) +Σ_(n=1) ^∞ (1/(n!)){(((−1)^(n−1) (n−1)!)/2^n )}x^n   =ln(2) + Σ_(n=1) ^∞   (((−1)^(n−1) )/(n 2^n )) x^n  .
1)wehavef(x)=k=0nf(k)(0)k!xk+xn+1(n+1)!θ(x)withlimx0θ(x)=0butf(x)=1x+2f(k)(x)=(1x+2)(k1)=(1)k1(k1)!(x+2)kf(k)(0)=(1)k1(k1)!k!2kfork1f(x)=ln(2)+k=1n(1)k1k2kxk+xn+1(n+1)!θ(x)2)f(x)=n=0f(n)(0)n!xn=f(0)+n=11n!{(1)n1(n1)!2n}xn=ln(2)+n=1(1)n1n2nxn.
Commented by prof Abdo imad last updated on 17/Jul/18
f^((k)) (0)= (((−1)^(k−1) (k−1)!)/2^k )  for k≥1
f(k)(0)=(1)k1(k1)!2kfork1

Leave a Reply

Your email address will not be published. Required fields are marked *