Menu Close

let-f-x-ln-2-x-2-x-1-find-D-f-and-find-the-assymptotes-to-C-f-2-calculate-f-x-and-give-the-variation-of-f-3-give-the-graph-of-f-4-give-the-equation-of-tangent-to-C-f-at-po




Question Number 40097 by maxmathsup by imad last updated on 15/Jul/18
let f(x)=ln(√((2+x)/(2−x)))  1)  find D_f     and find the assymptotes to C_f   2) calculate f^′ (x) and give the variation of f  3) give the graph of f  4) give the equation of tangent to C_(f )    at point  E((1/2),f((1/2)))  5) calculate   ∫_0 ^1 f(x)dx .
letf(x)=ln2+x2x1)findDfandfindtheassymptotestoCf2)calculatef(x)andgivethevariationoff3)givethegraphoff4)givetheequationoftangenttoCfatpointE(12,f(12))5)calculate01f(x)dx.
Commented by math khazana by abdo last updated on 03/Aug/18
1) D_f =]−2,2[  lim_(x→−2^+ )    f(x)=−∞  lim_(x→2^− )   f(x)=+∞  so  x=−2 and x=2 are  assymptotes to C_f   2) we have f(x)=(1/2){ln(2+x)−ln(2−x)}⇒  f^′ (x)= (1/(2(2+x))) +(1/(2(2−x))) =(1/2){(1/(2+x)) +(1/(2−x))}  =(1/2) (4/(4−x^2 )) =(2/(4−x^2 )) > 0 because  −2<x<2 so f  is increasing on]−2,2[  4) equ.of tangent is y=f^′ ((1/2))(x−(1/2))+f((1/2))  f^′ ((1/2))= (2/(4−(1/4))) =((2×4)/(15)) =(8/(15))  f((1/2)) =(1/2)ln(((2+(1/2))/(2−(1/2)))) =(1/2)ln((5/3)) ⇒  y =(8/(15))(x−(1/2)) +(1/2)ln((5/3))  y=(8/(15))x  −(4/(15)) +(1/2)ln((5/3)).
1)Df=]2,2[limx2+f(x)=limx2f(x)=+sox=2andx=2areassymptotestoCf2)wehavef(x)=12{ln(2+x)ln(2x)}f(x)=12(2+x)+12(2x)=12{12+x+12x}=1244x2=24x2>0because2<x<2sofisincreasingon]2,2[4)equ.oftangentisy=f(12)(x12)+f(12)f(12)=2414=2×415=815f(12)=12ln(2+12212)=12ln(53)y=815(x12)+12ln(53)y=815x415+12ln(53).
Commented by math khazana by abdo last updated on 03/Aug/18
5) let I = ∫_0 ^1 ln((√((2+x)/(2−x))))dx  I = (1/2)∫_0 ^1 ln(2+x)dx −(1/2) ∫_0 ^1 ln(2−x)dx but  ∫_0 ^1 ln(2+x)dx =_(2+x=t)   ∫_2 ^3 ln(t)dt=[tln(t)−t]_2 ^3   =3ln(3)−3−2ln(2)+2 =3ln(3)−2ln(2)−1  ∫_0 ^1 ln(2−x)dx =_(2−x=t)   −∫_2 ^1 ln(t)dt  =∫_1 ^2 ln(t)dt =[tln(t)−t]_1 ^2 =2ln(2)−2 +1  =2ln(2)−1 ⇒  ∫_0 ^1 f(x)dx=(3/2)ln(3)−ln(2)−(1/2) −ln(2) +(1/2)  =(3/2)ln(3)−2ln(2).
5)letI=01ln(2+x2x)dxI=1201ln(2+x)dx1201ln(2x)dxbut01ln(2+x)dx=2+x=t23ln(t)dt=[tln(t)t]23=3ln(3)32ln(2)+2=3ln(3)2ln(2)101ln(2x)dx=2x=t21ln(t)dt=12ln(t)dt=[tln(t)t]12=2ln(2)2+1=2ln(2)101f(x)dx=32ln(3)ln(2)12ln(2)+12=32ln(3)2ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *