Question Number 39695 by maxmathsup by imad last updated on 09/Jul/18

Commented by maxmathsup by imad last updated on 14/Jul/18
![1) we have f(x)=ln(2x) +ln(arctan((√(2x^2 −1)))) x ∈ D_f ⇔ x>0 and 2x^2 −1>0 and arctan((√(2x^2 −1)))>0 but 2x^2 −1>0 ⇔x^2 >(1/2) ⇒∣x∣>(1/( (√2))) ⇒ x∈]−∞,−(1/( (√2)))[∪](1/( (√2))),+∞[ ⇒ D_f =](1/( (√2))),+∞[ 2) f^, (x) = (1/x) +(((arctan((√(2x^2 −1))))^′ )/(arctan((√(2x^2 −1))))) =(1/x) +(1/(arctan((√(2x^2 −1))))) { (((4x)/(2(√(2x^2 −1))))/(1+2x^2 −1))} =(1/x) + (1/(x arctan((√(2x^2 −1)))(√(2x^2 −1)))) .](https://www.tinkutara.com/question/Q39989.png)
Commented by maxmathsup by imad last updated on 14/Jul/18

Commented by maxmathsup by imad last updated on 14/Jul/18

Commented by maxmathsup by imad last updated on 14/Jul/18
