Menu Close

let-f-x-ln-2xarctan-2x-2-1-1-find-D-f-2-calculate-f-x-and-determine-its-sign-3-determine-the-equation-of-assymptote-at-pont-A-1-f-1-3-find-a-and-b-from-R-f-x-a-x-1-b-x-1-




Question Number 39695 by maxmathsup by imad last updated on 09/Jul/18
let f(x)=ln(2xarctan(√(2x^2  −1)))  1) find D_f   2)calculate f^′ (x) and  determine its sign.  3) determine the equation of assymptote at pont A(1,f(1))  3) find a and b from R /  f(x)∼ a(x−1) +b  (x→1)  4) calculate ∫_0 ^1  f(x)dx  5) calculate f^(′′) (x)
letf(x)=ln(2xarctan2x21)1)findDf2)calculatef(x)anddetermineitssign.3)determinetheequationofassymptoteatpontA(1,f(1))3)findaandbfromR/f(x)a(x1)+b(x1)4)calculate01f(x)dx5)calculatef(x)
Commented by maxmathsup by imad last updated on 14/Jul/18
1) we have f(x)=ln(2x) +ln(arctan((√(2x^2  −1))))  x ∈ D_f   ⇔ x>0 and 2x^2  −1>0 and arctan((√(2x^2  −1)))>0 but  2x^2  −1>0 ⇔x^2 >(1/2)  ⇒∣x∣>(1/( (√2))) ⇒ x∈]−∞,−(1/( (√2)))[∪](1/( (√2))),+∞[ ⇒  D_f =](1/( (√2))),+∞[  2) f^, (x) = (1/x)  +(((arctan((√(2x^2 −1))))^′ )/(arctan((√(2x^2  −1)))))  =(1/x) +(1/(arctan((√(2x^2  −1))))) { (((4x)/(2(√(2x^2  −1))))/(1+2x^2 −1))}  =(1/x) +  (1/(x arctan((√(2x^2 −1)))(√(2x^2 −1)))) .
1)wehavef(x)=ln(2x)+ln(arctan(2x21))xDfx>0and2x21>0andarctan(2x21)>0but2x21>0x2>12⇒∣x∣>12x],12[]12,+[Df=]12,+[2)f,(x)=1x+(arctan(2x21))arctan(2x21)=1x+1arctan(2x21){4x22x211+2x21}=1x+1xarctan(2x21)2x21.
Commented by maxmathsup by imad last updated on 14/Jul/18
we have x>(1/( (√2))) ⇒ f^′ (x)>0  2) equation of tangent to C_f  at point A(1,f(1))is y=f^′ (1)(x−1) +f(1)  but f(1)=ln(2) +ln((π/4))  and f^′ (1) = 1+ (4/π) ⇒  y =(1+(4/π))(x−1) +ln(2) +ln((π/4)) .
wehavex>12f(x)>02)equationoftangenttoCfatpointA(1,f(1))isy=f(1)(x1)+f(1)butf(1)=ln(2)+ln(π4)andf(1)=1+4πy=(1+4π)(x1)+ln(2)+ln(π4).
Commented by maxmathsup by imad last updated on 14/Jul/18
3) in this Q change assymptote by tangent .
3)inthisQchangeassymptotebytangent.
Commented by maxmathsup by imad last updated on 14/Jul/18
4) a=(1+(4/π))  and b=ln(2)+ln((π/4))
4)a=(1+4π)andb=ln(2)+ln(π4)

Leave a Reply

Your email address will not be published. Required fields are marked *