Question Number 62129 by maxmathsup by imad last updated on 15/Jun/19

Commented by arcana last updated on 16/Jun/19

Commented by kaivan.ahmadi last updated on 16/Jun/19

Commented by maxmathsup by imad last updated on 16/Jun/19
![1) x∈D_f ⇔x≥0 and x−2(√x)+1>0 ⇔x≥0 and ((√x)−1)^2 >0 ⇔x≥0 and x≠1 ⇒ D_f =[0,1[∪]1,+∞[ 2)f(x)=y ⇔x =f^(−1) (y) f(x)=y ⇒ln(x+1−2(√x)) =y ⇒x+1−2(√x)=e^y ⇒((√x)−1)^(2 ) =e^y ⇒ ∣(√x)−1∣ =(√e^y ) by e^y >0 ⇒ x>1 ⇒(√x)−1 =(√e^y ) ⇒(√x)=1+e^(y/2) ⇒ x =(1+e^(y/2) )^2 ⇒ f^(−1) (x) =(1+e^(x/2) )^2 3) let I =∫ f(x)dx ⇒ I =∫ ln(x+1−2(√x))dx by parts I =xln(x+1−2(√x)) −∫ x((1−(1/( (√x))))/(x+1−2(√x))) dx =xln(x+1−2(√x)) −∫ x(((√x)−1)/( (√x)(x+1−2(√x)))) dx ∫ x(((√x)−1)/( (√x)(x+1−2(√x))))dx = ∫ (((√x)((√x)−1))/(x+1−2(√x))) dx = ∫ (((√x)((√x)−1))/(((√x)−1)^2 )) dx =∫ ((√x)/( (√x)−1)) dx =_((√x)=t) ∫ (t/(t−1))(2t)dt =2 ∫ ((t^2 −1+1)/(t−1)) dt =2 ∫(t+1)dt +2 ∫ (dt/(t−1)) =2(t^2 /2) +2t +2ln∣t−1∣ +c =t^2 +2t +2ln∣t−1∣ +c =x +2(√x) +2ln∣(√x)−1∣ +c ⇒ I =xln(x+1−2(√x))−x−2(√x)−2ln∣(√x)−1∣+c .](https://www.tinkutara.com/question/Q62158.png)
Commented by maxmathsup by imad last updated on 16/Jun/19
