Menu Close

let-f-x-ln-x-1-2-x-1-find-D-f-2-determine-f-1-3-calculate-f-x-dx-and-f-1-x-dx-




Question Number 62129 by maxmathsup by imad last updated on 15/Jun/19
let f(x)=ln(x+1−2(√x))  1) find D_f   2) determine f^(−1)   3) calculate  ∫f (x)dx and  ∫ f^(−1) (x)dx
letf(x)=ln(x+12x)1)findDf2)determinef13)calculatef(x)dxandf1(x)dx
Commented by arcana last updated on 16/Jun/19
1)  x+1−2(√x)>0⇒((√x)−1)^2 >0  necessary (√x)−1>0 ∨ (√x)−1<0  (√x)>1∨(√x)<1  x>1∨x<1, x≥0  ⇒D_f =[0,1)∪(1,+∞)=R^+ −{1}
1)x+12x>0(x1)2>0necessaryx1>0x1<0x>1x<1x>1x<1,x0Df=[0,1)(1,+)=R+{1}
Commented by kaivan.ahmadi last updated on 16/Jun/19
e^y =((√x)−1)^2 ⇒(√e^y )=(√x)−1⇒1+(√e^y )=(√x)⇒  x=(√(1+(√e^y )))⇒f^(−1) (x)=(√(1+(√e^x )))
ey=(x1)2ey=x11+ey=xx=1+eyf1(x)=1+ex
Commented by maxmathsup by imad last updated on 16/Jun/19
1) x∈D_f  ⇔x≥0 and x−2(√x)+1>0 ⇔x≥0 and ((√x)−1)^2 >0 ⇔x≥0 and x≠1 ⇒  D_f =[0,1[∪]1,+∞[  2)f(x)=y ⇔x =f^(−1) (y)  f(x)=y ⇒ln(x+1−2(√x)) =y ⇒x+1−2(√x)=e^y  ⇒((√x)−1)^(2 ) =e^y  ⇒  ∣(√x)−1∣ =(√e^y )    by e^y >0 ⇒ x>1 ⇒(√x)−1 =(√e^y ) ⇒(√x)=1+e^(y/2)  ⇒  x =(1+e^(y/2) )^2   ⇒  f^(−1) (x) =(1+e^(x/2) )^2   3) let I =∫ f(x)dx ⇒ I =∫  ln(x+1−2(√x))dx  by parts  I =xln(x+1−2(√x)) −∫ x((1−(1/( (√x))))/(x+1−2(√x))) dx  =xln(x+1−2(√x)) −∫ x(((√x)−1)/( (√x)(x+1−2(√x)))) dx  ∫  x(((√x)−1)/( (√x)(x+1−2(√x))))dx = ∫  (((√x)((√x)−1))/(x+1−2(√x))) dx = ∫ (((√x)((√x)−1))/(((√x)−1)^2 )) dx =∫  ((√x)/( (√x)−1)) dx  =_((√x)=t)         ∫   (t/(t−1))(2t)dt =2 ∫ ((t^2 −1+1)/(t−1)) dt =2 ∫(t+1)dt +2 ∫ (dt/(t−1))  =2(t^2 /2) +2t +2ln∣t−1∣ +c =t^2  +2t +2ln∣t−1∣ +c  =x +2(√x) +2ln∣(√x)−1∣ +c ⇒  I =xln(x+1−2(√x))−x−2(√x)−2ln∣(√x)−1∣+c .
1)xDfx0andx2x+1>0x0and(x1)2>0x0andx1Df=[0,1[]1,+[2)f(x)=yx=f1(y)f(x)=yln(x+12x)=yx+12x=ey(x1)2=eyx1=eybyey>0x>1x1=eyx=1+ey2x=(1+ey2)2f1(x)=(1+ex2)23)letI=f(x)dxI=ln(x+12x)dxbypartsI=xln(x+12x)x11xx+12xdx=xln(x+12x)xx1x(x+12x)dxxx1x(x+12x)dx=x(x1)x+12xdx=x(x1)(x1)2dx=xx1dx=x=ttt1(2t)dt=2t21+1t1dt=2(t+1)dt+2dtt1=2t22+2t+2lnt1+c=t2+2t+2lnt1+c=x+2x+2lnx1+cI=xln(x+12x)x2x2lnx1+c.
Commented by maxmathsup by imad last updated on 16/Jun/19
∫ f^(−1) (x)dx =∫(1+e^(x/2) )^2 dx =∫   (1+2 e^(x/2)  +e^x )dx  =x +4e^(x/2)  +e^x  +c .
f1(x)dx=(1+ex2)2dx=(1+2ex2+ex)dx=x+4ex2+ex+c.

Leave a Reply

Your email address will not be published. Required fields are marked *