Menu Close

let-f-x-ln-x-1-x-1-1-determine-D-f-2-calculatef-n-x-and-f-n-0-3-developp-f-at-integr-serie-4-calculate-1-2-1-2-f-x-dx-




Question Number 62882 by mathmax by abdo last updated on 26/Jun/19
let f(x)=ln∣((x−1)/(x+1))∣  1)determine D_f   2) calculatef^((n)) (x) and f^((n)) (0)  3) developp f at integr serie  4) calculate ∫_(−(1/2)) ^(1/2) f(x)dx .
letf(x)=lnx1x+11)determineDf2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie4)calculate1212f(x)dx.
Commented by mathmax by abdo last updated on 27/Jun/19
4) ∫_(−(1/2)) ^(1/2)  ln∣((x−1)/(x+1))∣dx =∫_(−(1/2)) ^(1/2) ln∣1−x∣ dx −∫_(−(1/2)) ^(1/2)  ln∣1+x∣ dx  =∫_(−(1/2)) ^(1/2) ln(1−x)dx −∫_(−(1/2)) ^(1/2)  ln(1+x)dx =H−K  H =_(1−x =t)      ∫_(3/2) ^(1/2) ln(t)(−dt) =∫_(1/2) ^(3/2) ln(t)dt =[tln(t)−t]_(1/2) ^(3/2)   =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2)  K =∫_(−(1/2)) ^(1/2) ln(1+x)dx =_(1+x =t)    ∫_(1/2) ^(3/2)  ln(t)dt =[tln(t)−t]_(1/2) ^(3/2)   =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2) ⇒  A =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2) −(3/2)ln((3/2))+(3/2) +(1/2)ln((1/2))−(1/2) ⇒  A =0     another[way  let prove that f is odd we have  f(−x) =ln∣((−x−1)/(−x+1))∣ =ln∣((x+1)/(x−1))∣ =−ln∣((x−1)/(x+1))∣=−f(x) ⇒ ∫_(−(1/2)) ^(1/2) f(x)dx =0.
4)1212lnx1x+1dx=1212ln1xdx1212ln1+xdx=1212ln(1x)dx1212ln(1+x)dx=HKH=1x=t3212ln(t)(dt)=1232ln(t)dt=[tln(t)t]1232=32ln(32)3212ln(12)+12K=1212ln(1+x)dx=1+x=t1232ln(t)dt=[tln(t)t]1232=32ln(32)3212ln(12)+12A=32ln(32)3212ln(12)+1232ln(32)+32+12ln(12)12A=0another[wayletprovethatfisoddwehavef(x)=lnx1x+1=lnx+1x1=lnx1x+1∣=f(x)1212f(x)dx=0.
Commented by mathmax by abdo last updated on 27/Jun/19
1) D_f =R−{−1,1}  2)we have f(x) =ln∣x−1∣−ln∣x+1∣ ⇒  f^′ (x) =(1/(x−1)) −(1/(x+1)) ⇒f^((n)) (x) =((1/(x−1)))^((n−1)) −((1/(x+1)))^((n−1))  ⇒  f^((n)) (x) =(((−1)^(n−1) (n−1)!)/((x−1)^n )) −(((−1)^(n−1) (n−1)!)/((x+1)^n )) =(−1)^(n−1) (n−1)!{(1/((x−1)^n ))−(1/((x+1)^n ))}  f^((n)) (x)=(−1)^(n−1) (n−1)!(((x+1)^n −(x−1)^n )/((x^2 −1)^n ))  with x≥1  f^((n)) (0) =(−1)^(n−1) (n−1)! ((1−(−1)^n )/((−1)^n )) =−(n−1)!(1−(−1)^n ) ={(−1)^n −1}(n−1)!  ⇒f^((2p)) (0) =0 and f^((2p+1)) (0) =−2(2p)!  3) f(x)  =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(n=1) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(p=0) ^∞  ((−2 (2p)!)/((2p+1)!)) x^(2p+1)  ⇒   f(x)=−2Σ_(p=0) ^∞   (x^(2p+1) /(2p+1))
1)Df=R{1,1}2)wehavef(x)=lnx1lnx+1f(x)=1x11x+1f(n)(x)=(1x1)(n1)(1x+1)(n1)f(n)(x)=(1)n1(n1)!(x1)n(1)n1(n1)!(x+1)n=(1)n1(n1)!{1(x1)n1(x+1)n}f(n)(x)=(1)n1(n1)!(x+1)n(x1)n(x21)nwithx1f(n)(0)=(1)n1(n1)!1(1)n(1)n=(n1)!(1(1)n)={(1)n1}(n1)!f(2p)(0)=0andf(2p+1)(0)=2(2p)!3)f(x)=n=0f(n)(0)n!xn=n=1f(n)(0)n!xn=p=02(2p)!(2p+1)!x2p+1f(x)=2p=0x2p+12p+1
Commented by mathmax by abdo last updated on 27/Jun/19
sorry i have flaged the post by error...
sorryihaveflagedthepostbyerror

Leave a Reply

Your email address will not be published. Required fields are marked *