let-f-x-ln-x-1-x-1-1-determine-D-f-2-calculatef-n-x-and-f-n-0-3-developp-f-at-integr-serie-4-calculate-1-2-1-2-f-x-dx- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 62882 by mathmax by abdo last updated on 26/Jun/19 letf(x)=ln∣x−1x+1∣1)determineDf2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie4)calculate∫−1212f(x)dx. Commented by mathmax by abdo last updated on 27/Jun/19 4)∫−1212ln∣x−1x+1∣dx=∫−1212ln∣1−x∣dx−∫−1212ln∣1+x∣dx=∫−1212ln(1−x)dx−∫−1212ln(1+x)dx=H−KH=1−x=t∫3212ln(t)(−dt)=∫1232ln(t)dt=[tln(t)−t]1232=32ln(32)−32−12ln(12)+12K=∫−1212ln(1+x)dx=1+x=t∫1232ln(t)dt=[tln(t)−t]1232=32ln(32)−32−12ln(12)+12⇒A=32ln(32)−32−12ln(12)+12−32ln(32)+32+12ln(12)−12⇒A=0another[wayletprovethatfisoddwehavef(−x)=ln∣−x−1−x+1∣=ln∣x+1x−1∣=−ln∣x−1x+1∣=−f(x)⇒∫−1212f(x)dx=0. Commented by mathmax by abdo last updated on 27/Jun/19 1)Df=R−{−1,1}2)wehavef(x)=ln∣x−1∣−ln∣x+1∣⇒f′(x)=1x−1−1x+1⇒f(n)(x)=(1x−1)(n−1)−(1x+1)(n−1)⇒f(n)(x)=(−1)n−1(n−1)!(x−1)n−(−1)n−1(n−1)!(x+1)n=(−1)n−1(n−1)!{1(x−1)n−1(x+1)n}f(n)(x)=(−1)n−1(n−1)!(x+1)n−(x−1)n(x2−1)nwithx⩾1f(n)(0)=(−1)n−1(n−1)!1−(−1)n(−1)n=−(n−1)!(1−(−1)n)={(−1)n−1}(n−1)!⇒f(2p)(0)=0andf(2p+1)(0)=−2(2p)!3)f(x)=∑n=0∞f(n)(0)n!xn=∑n=1∞f(n)(0)n!xn=∑p=0∞−2(2p)!(2p+1)!x2p+1⇒f(x)=−2∑p=0∞x2p+12p+1 Commented by mathmax by abdo last updated on 27/Jun/19 sorryihaveflagedthepostbyerror… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-x-3-1-x-3-n-1-dx-Next Next post: y-2y-sin-x-2y-3-2-sin-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.