Menu Close

let-f-x-log-cht-developp-f-at-fourier-serie-




Question Number 144699 by mathmax by abdo last updated on 28/Jun/21
let f(x)=log(cht)  developp f at fourier serie
letf(x)=log(cht)developpfatfourierserie
Answered by Olaf_Thorendsen last updated on 28/Jun/21
f is not periodic !
fisnotperiodic!
Answered by mathmax by abdo last updated on 28/Jun/21
sorry developp f at integr serie
sorrydeveloppfatintegrserie
Answered by mathmax by abdo last updated on 29/Jun/21
f(x)=log(cht)⇒f^′ (x)=((sht)/(cht))=((e^t −e^(−t) )/(e^t  +e^t ))  =_(e^t  =z)   ((z−z^(−1) )/(z+z^(−1) ))=((z^2 −1)/(z^2  +1))=(z^2 −1)Σ_(n=0) ^∞  (−1)^n  z^(2n)   =Σ_(n=0) ^∞  (−1)^n  z^(2n+2) −Σ_(n=0) ^∞ (−1)^n  z^(2n)   =Σ_(n=0) ^∞ (−1)^n  e^((2n+2)t)  −Σ_(n=0) ^∞  (−1)^n  e^(2nt)   =Σ_(n=0) ^∞ (−1)^n Σ_(p=0) ^∞  (({(2n+2)t}^p )/(p!))−Σ_(n=0) ^∞  (−1)^n  Σ_(p=0) ^∞  (((2nt)^p )/(p!))  =Σ_(n=0) ^∞ (−1)^n  Σ_(p=0) ^∞  (((2n+2)^p )/(p!))t^p  −Σ_(n=0) ^∞ (−1)^n  Σ_(p=0) ^∞  (((2n)^p )/(p!))t^p
f(x)=log(cht)f(x)=shtcht=etetet+et=et=zzz1z+z1=z21z2+1=(z21)n=0(1)nz2n=n=0(1)nz2n+2n=0(1)nz2n=n=0(1)ne(2n+2)tn=0(1)ne2nt=n=0(1)np=0{(2n+2)t}pp!n=0(1)np=0(2nt)pp!=n=0(1)np=0(2n+2)pp!tpn=0(1)np=0(2n)pp!tp

Leave a Reply

Your email address will not be published. Required fields are marked *