Question Number 36748 by prof Abdo imad last updated on 05/Jun/18
$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{ln}\left({nx}\right)} \\ $$$$\left.\mathrm{1}\left.\right)\:{give}\:{D}_{{f}} \:\:{and}\:{study}\:{f}\:{on}\right]\mathrm{1},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{continjity}\:{of}\:{f}\:{and}\:{calculate} \\ $$$${lim}\:_{{x}\rightarrow\mathrm{1}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right). \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]\mathrm{1},+\infty\left[\:.\right. \\ $$