Menu Close

let-f-x-n-1-sin-nx-n-3-1-study-the-convergence-of-this-serie-2-prove-that-0-pi-f-x-dx-2-n-1-1-2n-1-4-3-prove-that-x-R-f-x-n-1-cos-nx-n-2-4-p




Question Number 37333 by math khazana by abdo last updated on 12/Jun/18
let f(x)=Σ_(n=1) ^∞    ((sin(nx))/n^3 )  1)study the convergence of this serie  2)prove that  ∫_0 ^π f(x)dx=2 Σ_(n=1) ^∞   (1/((2n−1)^4 ))  3)prove that ∀x∈ ∈R  f^′ (x)=Σ_(n=1) ^∞   ((cos(nx))/n^2 )  4) prove that ∫_0 ^(π/2) ( Σ_(n≥1) ((cos(nx))/n^2 ))=Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 ))
letf(x)=n=1sin(nx)n31)studytheconvergenceofthisserie2)provethat0πf(x)dx=2n=11(2n1)43)provethatxRf(x)=n=1cos(nx)n24)provethat0π2(n1cos(nx)n2)=n=0(1)n(2n+1)2
Commented by prof Abdo imad last updated on 17/Jun/18
1) the uniform convergence of this serie is  assured because ∀x∈R ∣((sin(nx))/n^3 )∣≤(1/n^3 ) and  Σ (1/n^3 ) is comvergent  2) ∫_0 ^π  f(x)dx= ∫_0 ^π Σ_(n=1) ^∞ ((sin(nx))/n^3 )dx  =Σ_(n=1) ^∞   (1/n^3 ) ∫_0 ^π   sin(nx)dx but  ∫_0 ^π  sin(nx)dx= [−(1/n)cos(nx)]_0 ^π =(1/n)(1−(−1)^n )  ⇒∫_0 ^π  f(x)dx^  =Σ_(n=1) ^∞   (1/n^4 )(1−(−1)^n )  =2 Σ_(n=0) ^∞    (1/((2n+1)^4 )) =_(n+1=p)  2Σ_(p=1) ^∞   (1/((2p−1)^4 ))
1)theuniformconvergenceofthisserieisassuredbecausexRsin(nx)n3∣⩽1n3andΣ1n3iscomvergent2)0πf(x)dx=0πn=1sin(nx)n3dx=n=11n30πsin(nx)dxbut0πsin(nx)dx=[1ncos(nx)]0π=1n(1(1)n)0πf(x)dx=n=11n4(1(1)n)=2n=01(2n+1)4=n+1=p2p=11(2p1)4
Commented by prof Abdo imad last updated on 17/Jun/18
3)let f_n (x)= ((sin(nx))/n^3 )  we have Σ f_n c.unif.  and Σ f_n ^′   conv.unif.  ⇒f^′ (x)=Σ f_n ^′ (x)  =Σ_(n=1) ^∞   ((ncos(nx))/n^3 ) =Σ_(n=1) ^∞  ((cos(nx))/n^2 )  4) due to uniform conv. we have also  ∫_0 ^(π/2)   (Σ_(n=1) ^∞  ((cos(nx))/n^2 ))=Σ_(n=1) ^∞  (1/n^2 )∫_0 ^(π/2) cos(nx)dx  =Σ_(n=1) ^∞  (1/n^2 )[(1/n)sin(nx)]_0 ^(π/2)   =Σ_(n=1) ^∞   (1/n^3 )sin(n(π/2))=Σ_(n=0) ^∞  (1/((2n+1)^3 ))sin((2n+1)(π/2))  =Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^3 )) .
3)letfn(x)=sin(nx)n3wehaveΣfnc.unif.andΣfnconv.unif.f(x)=Σfn(x)=n=1ncos(nx)n3=n=1cos(nx)n24)duetouniformconv.wehavealso0π2(n=1cos(nx)n2)=n=11n20π2cos(nx)dx=n=11n2[1nsin(nx)]0π2=n=11n3sin(nπ2)=n=01(2n+1)3sin((2n+1)π2)=n=0(1)n(2n+1)3.

Leave a Reply

Your email address will not be published. Required fields are marked *