let-f-x-n-1-sin-nx-n-3-1-study-the-convergence-of-this-serie-2-prove-that-0-pi-f-x-dx-2-n-1-1-2n-1-4-3-prove-that-x-R-f-x-n-1-cos-nx-n-2-4-p Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 37333 by math khazana by abdo last updated on 12/Jun/18 letf(x)=∑n=1∞sin(nx)n31)studytheconvergenceofthisserie2)provethat∫0πf(x)dx=2∑n=1∞1(2n−1)43)provethat∀x∈∈Rf′(x)=∑n=1∞cos(nx)n24)provethat∫0π2(∑n⩾1cos(nx)n2)=∑n=0∞(−1)n(2n+1)2 Commented by prof Abdo imad last updated on 17/Jun/18 1)theuniformconvergenceofthisserieisassuredbecause∀x∈R∣sin(nx)n3∣⩽1n3andΣ1n3iscomvergent2)∫0πf(x)dx=∫0π∑n=1∞sin(nx)n3dx=∑n=1∞1n3∫0πsin(nx)dxbut∫0πsin(nx)dx=[−1ncos(nx)]0π=1n(1−(−1)n)⇒∫0πf(x)dx=∑n=1∞1n4(1−(−1)n)=2∑n=0∞1(2n+1)4=n+1=p2∑p=1∞1(2p−1)4 Commented by prof Abdo imad last updated on 17/Jun/18 3)letfn(x)=sin(nx)n3wehaveΣfnc.unif.andΣfn′conv.unif.⇒f′(x)=Σfn′(x)=∑n=1∞ncos(nx)n3=∑n=1∞cos(nx)n24)duetouniformconv.wehavealso∫0π2(∑n=1∞cos(nx)n2)=∑n=1∞1n2∫0π2cos(nx)dx=∑n=1∞1n2[1nsin(nx)]0π2=∑n=1∞1n3sin(nπ2)=∑n=0∞1(2n+1)3sin((2n+1)π2)=∑n=0∞(−1)n(2n+1)3. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-168400Next Next post: Question-168405 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.