Menu Close

let-f-x-n-1-sin-nx-n-3-1-study-the-convergence-of-this-serie-2-prove-that-0-pi-f-x-dx-2-n-1-1-2n-1-4-3-prove-that-x-R-f-x-n-1-cos-nx-n-2-4-p




Question Number 37333 by math khazana by abdo last updated on 12/Jun/18
let f(x)=Σ_(n=1) ^∞    ((sin(nx))/n^3 )  1)study the convergence of this serie  2)prove that  ∫_0 ^π f(x)dx=2 Σ_(n=1) ^∞   (1/((2n−1)^4 ))  3)prove that ∀x∈ ∈R  f^′ (x)=Σ_(n=1) ^∞   ((cos(nx))/n^2 )  4) prove that ∫_0 ^(π/2) ( Σ_(n≥1) ((cos(nx))/n^2 ))=Σ_(n=0) ^∞   (((−1)^n )/((2n+1)^2 ))
$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} } \\ $$$$\left.\mathrm{1}\right){study}\:{the}\:{convergence}\:{of}\:{this}\:{serie} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}=\mathrm{2}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall{x}\in\:\in{R}\:\:{f}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by prof Abdo imad last updated on 17/Jun/18
1) the uniform convergence of this serie is  assured because ∀x∈R ∣((sin(nx))/n^3 )∣≤(1/n^3 ) and  Σ (1/n^3 ) is comvergent  2) ∫_0 ^π  f(x)dx= ∫_0 ^π Σ_(n=1) ^∞ ((sin(nx))/n^3 )dx  =Σ_(n=1) ^∞   (1/n^3 ) ∫_0 ^π   sin(nx)dx but  ∫_0 ^π  sin(nx)dx= [−(1/n)cos(nx)]_0 ^π =(1/n)(1−(−1)^n )  ⇒∫_0 ^π  f(x)dx^  =Σ_(n=1) ^∞   (1/n^4 )(1−(−1)^n )  =2 Σ_(n=0) ^∞    (1/((2n+1)^4 )) =_(n+1=p)  2Σ_(p=1) ^∞   (1/((2p−1)^4 ))
$$\left.\mathrm{1}\right)\:{the}\:{uniform}\:{convergence}\:{of}\:{this}\:{serie}\:{is} \\ $$$${assured}\:{because}\:\forall{x}\in{R}\:\mid\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\mid\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{and} \\ $$$$\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{is}\:{comvergent} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){dx}=\:\int_{\mathrm{0}} ^{\pi} \sum_{{n}=\mathrm{1}} ^{\infty} \frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }{dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\pi} \:\:{sin}\left({nx}\right){dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{sin}\left({nx}\right){dx}=\:\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} =\frac{\mathrm{1}}{{n}}\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){d}\overset{} {{x}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }\:=_{{n}+\mathrm{1}={p}} \:\mathrm{2}\sum_{{p}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Commented by prof Abdo imad last updated on 17/Jun/18
3)let f_n (x)= ((sin(nx))/n^3 )  we have Σ f_n c.unif.  and Σ f_n ^′   conv.unif.  ⇒f^′ (x)=Σ f_n ^′ (x)  =Σ_(n=1) ^∞   ((ncos(nx))/n^3 ) =Σ_(n=1) ^∞  ((cos(nx))/n^2 )  4) due to uniform conv. we have also  ∫_0 ^(π/2)   (Σ_(n=1) ^∞  ((cos(nx))/n^2 ))=Σ_(n=1) ^∞  (1/n^2 )∫_0 ^(π/2) cos(nx)dx  =Σ_(n=1) ^∞  (1/n^2 )[(1/n)sin(nx)]_0 ^(π/2)   =Σ_(n=1) ^∞   (1/n^3 )sin(n(π/2))=Σ_(n=0) ^∞  (1/((2n+1)^3 ))sin((2n+1)(π/2))  =Σ_(n=0) ^∞    (((−1)^n )/((2n+1)^3 )) .
$$\left.\mathrm{3}\right){let}\:{f}_{{n}} \left({x}\right)=\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\:\:{we}\:{have}\:\Sigma\:{f}_{{n}} {c}.{unif}. \\ $$$${and}\:\Sigma\:{f}_{{n}} ^{'} \:\:{conv}.{unif}.\:\:\Rightarrow{f}^{'} \left({x}\right)=\Sigma\:{f}_{{n}} ^{'} \left({x}\right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{ncos}\left({nx}\right)}{{n}^{\mathrm{3}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right)\:{due}\:{to}\:{uniform}\:{conv}.\:{we}\:{have}\:{also} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left({nx}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[\frac{\mathrm{1}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }{sin}\left({n}\frac{\pi}{\mathrm{2}}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }{sin}\left(\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *