Question Number 36747 by prof Abdo imad last updated on 05/Jun/18
$${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$
Commented by prof Abdo imad last updated on 06/Jun/18
$$\left.{thefunction}\:{f}_{{n}} \left({x}\right)\:=\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \:{are}\:{C}^{\mathrm{1}} \:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.{and}\:{f}_{{n}} ^{'} \left({x}\right)=\:{sin}\left({nx}\right){x}^{{n}−\mathrm{1}} \:{are}\:{continues}\:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.{also}\:\Sigma\:{f}_{{n}} ^{'} \left({x}\right)\:{converges}\:{unif}.\:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\Sigma\:{f}_{{n}} \left({x}\right){conv}.{unif}.\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} {sin}\left({nx}\right)\:{x}^{{n}−\mathrm{1}} \\ $$$$={Im}\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{{inx}} \:{x}^{{n}−\mathrm{1}} \right)\:{but} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{e}^{{inx}} \:{x}^{{n}−\mathrm{1}} \:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{{i}\left({n}+\mathrm{1}\right){x}} \:{x}^{{n}} \\ $$$$=\:{e}^{{ix}} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left({x}\:{e}^{{ix}} \right)^{{n}} \:={e}^{{ix}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{ix}} } \\ $$$$=\:\:\frac{\mathrm{1}}{{e}^{−{ix}} \:−{x}}\:=\:\frac{\mathrm{1}}{{cosx}\:−{isinx}\:−{x}} \\ $$$$=\frac{{cosx}\:−{x}\:+{isin}\left({x}\right)}{\left({cosx}\:−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} {x}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\:\frac{{sinx}}{\mathrm{1}−\mathrm{2}\:{x}\:{cosx}\:+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\int\:\:\:\:\:\:\:\frac{{sinx}}{{x}^{\mathrm{2}} \:−\mathrm{2}{xcosx}\:+\mathrm{1}}{dx}\:+{c}….{becontinued}… \\ $$