Menu Close

let-f-x-n-1-sin-nx-n-x-n-1-prove-that-f-is-C-1-on-1-1-2-calculate-f-x-and-prove-that-f-x-arctan-xsinx-1-x-cosx-




Question Number 36747 by prof Abdo imad last updated on 05/Jun/18
let f(x)= Σ_(n=1) ^∞    ((sin(nx))/n) x^n   1) prove that f is C^1  on ]−1,1[  2)calculate f^′ (x) and prove that  f(x)=arctan( ((xsinx)/(1−x cosx)))
letf(x)=n=1sin(nx)nxn1)provethatfisC1on]1,1[2)calculatef(x)andprovethatf(x)=arctan(xsinx1xcosx)
Commented by prof Abdo imad last updated on 06/Jun/18
thefunction f_n (x) =((sin(nx))/n) x^n  are C^1  on]−1,1[  and f_n ^′ (x)= sin(nx)x^(n−1)  are continues on]−1,1[  also Σ f_n ^′ (x) converges unif. on]−1,1[  Σ f_n (x)conv.unif. f is C^1  on]−1,1[  2) we have f^′ (x)= Σ_(n=1) ^∞ sin(nx) x^(n−1)   =Im( Σ_(n=1) ^∞   e^(inx)  x^(n−1) ) but  Σ_(n=1) ^∞   e^(inx)  x^(n−1)  = Σ_(n=0) ^∞   e^(i(n+1)x)  x^n   = e^(ix)  Σ_(n=0) ^∞   (x e^(ix) )^n  =e^(ix)   (1/(1−xe^(ix) ))  =  (1/(e^(−ix)  −x)) = (1/(cosx −isinx −x))  =((cosx −x +isin(x))/((cosx −x)^2  +sin^2 x)) ⇒  f^′ (x) = ((sinx)/(1−2 x cosx +x^2 )) ⇒  f(x) = ∫       ((sinx)/(x^2  −2xcosx +1))dx +c....becontinued...
thefunctionfn(x)=sin(nx)nxnareC1on]1,1[andfn(x)=sin(nx)xn1arecontinueson]1,1[alsoΣfn(x)convergesunif.on]1,1[Σfn(x)conv.unif.fisC1on]1,1[2)wehavef(x)=n=1sin(nx)xn1=Im(n=1einxxn1)butn=1einxxn1=n=0ei(n+1)xxn=eixn=0(xeix)n=eix11xeix=1eixx=1cosxisinxx=cosxx+isin(x)(cosxx)2+sin2xf(x)=sinx12xcosx+x2f(x)=sinxx22xcosx+1dx+c.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *