let-f-x-n-1-sin-nx-n-x-n-with-1-lt-x-lt-1-1-find-a-explicite-form-of-f-x-2-find-the-value-of-n-1-1-n2-n-sin-n-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 42089 by maxmathsup by imad last updated on 17/Aug/18 letf(x)=∑n=1∞sin(nx)nxnwith−1<x<11)findaexpliciteformoff(x)2)findthevalueof∑n=1∞1n2nsin(n2) Commented by maxmathsup by imad last updated on 06/Nov/18 1)wehavef(x)=Im(∑n=1∞einxxnn)=Im(∑n=1∞(xeix)nn)letz=xeixandW(z)=∑n=1∞znn⇒dWdz(z)=∑n=1∞zn−1=∑n=0∞zn=11−z⇒W(z)=−ln(1−z)+cbutc=W(0)=0⇒W(z)=−ln(1−z)=−ln(1−xeix)=−ln(1−xcosx−ixsinx)=a+ib⇒ea+ib=11−xcosx−ixsinx=1−xcosx+ixsinx(1−xcosx)2+x2sin2x=1−xcosx+ixsnx1−2xcosx+x2cos2x+x2sin2x=1−xcosx+ixsinx1−2xcosx+x2⇒ea(cosb+isinb)=1−xcosx1−2xcosx+x2+ixsinx1−2xcosx+x2⇒eacosb=1−xcosx1−2xcosx+x2andeasinb=xsinx1−2xcosx+x2⇒tanb=xsinx1−xcosx⇒b=arctan(xsinx1−xcosx)⇒f(x)=Im(W(z))=arctan(xsinx1−xcosx)2)∑n=1∞1n2nsin(n2)=f(12)=arctan(sin(12)2(1−12cos(12))=arctan{sin(2−1)2−cos(2−1)}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-1-1-x-2-ln-1-1-x-dx-Next Next post: please-prove-A-B-C-are-angles-of-triangle-cylic-sinA-sinB-cosc-8cos-A-2-cos-B-2-cos-C-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.