Menu Close

let-f-x-n-1-sin-nx-n-x-n-with-1-lt-x-lt-1-1-find-a-explicite-form-of-f-x-2-find-the-value-of-n-1-1-n2-n-sin-n-2-




Question Number 42089 by maxmathsup by imad last updated on 17/Aug/18
let f(x) =Σ_(n=1) ^∞   ((sin(nx))/n) x^n      with  −1<x<1  1) find  a explicite form of f(x)  2) find the value of  Σ_(n=1) ^∞   (1/(n2^n ))sin((n/2))
letf(x)=n=1sin(nx)nxnwith1<x<11)findaexpliciteformoff(x)2)findthevalueofn=11n2nsin(n2)
Commented by maxmathsup by imad last updated on 06/Nov/18
1) we have f(x)=Im(Σ_(n=1) ^∞  ((e^(inx) x^n )/n)) =Im(Σ_(n=1) ^∞ (((xe^(ix) )^n )/n)) let   z =x e^(ix)   and W(z) =Σ_(n=1) ^∞  (z^n /n) ⇒(dW/dz)(z)=Σ_(n=1) ^∞  z^(n−1) =Σ_(n=0) ^∞  z^n  =(1/(1−z)) ⇒  W(z)=−ln(1−z) +c  but c=W(0)=0 ⇒W(z)=−ln(1−z)  =−ln(1−xe^(ix) )=−ln(1−xcosx −ix sinx)=a+ib ⇒  e^(a+ib)  = (1/(1−xcosx−ixsinx)) =((1−xcosx+ixsinx)/((1−xcosx)^2  +x^2 sin^2 x))  =((1−xcosx+ixsnx)/(1−2xcosx +x^2 cos^2 x +x^2 sin^2 x)) =((1−xcosx+ixsinx)/(1−2xcosx +x^2 )) ⇒  e^a (cosb +isinb) =((1−xcosx)/(1−2xcosx +x^2 )) +i((xsinx)/(1−2xcosx +x^2 )) ⇒  e^a cosb =((1−xcosx)/(1−2xcosx +x^2 )) and e^a sinb =((x sinx)/(1−2xcosx +x^2 ))  ⇒  tanb =((xsinx)/(1−xcosx)) ⇒b =arctan(((xsinx)/(1−x cosx))) ⇒f(x)=Im(W(z))  =arctan(((xsinx)/(1−xcosx)))  2) Σ_(n=1) ^∞   (1/(n2^n ))sin((n/2)) =f((1/2)) =arctan(((sin((1/2)))/(2(1−(1/2)cos((1/2)))))  =arctan{ ((sin(2^(−1) ))/(2−cos(2^(−1) )))} .
1)wehavef(x)=Im(n=1einxxnn)=Im(n=1(xeix)nn)letz=xeixandW(z)=n=1znndWdz(z)=n=1zn1=n=0zn=11zW(z)=ln(1z)+cbutc=W(0)=0W(z)=ln(1z)=ln(1xeix)=ln(1xcosxixsinx)=a+ibea+ib=11xcosxixsinx=1xcosx+ixsinx(1xcosx)2+x2sin2x=1xcosx+ixsnx12xcosx+x2cos2x+x2sin2x=1xcosx+ixsinx12xcosx+x2ea(cosb+isinb)=1xcosx12xcosx+x2+ixsinx12xcosx+x2eacosb=1xcosx12xcosx+x2andeasinb=xsinx12xcosx+x2tanb=xsinx1xcosxb=arctan(xsinx1xcosx)f(x)=Im(W(z))=arctan(xsinx1xcosx)2)n=11n2nsin(n2)=f(12)=arctan(sin(12)2(112cos(12))=arctan{sin(21)2cos(21)}.

Leave a Reply

Your email address will not be published. Required fields are marked *