Menu Close

let-f-x-n-1-x-n-2-with-x-1-1-prove-that-f-x-pi-2-ln-x-x-1-




Question Number 36751 by prof Abdo imad last updated on 05/Jun/18
let  f(x)= Σ_(n=1) ^∞  x^n^2     with  x∈]−1,1[  prove that  f(x) ∼ ((√π)/(2(√(−ln(x))))) (x →1^− )
$$\left.{let}\:\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{x}^{{n}^{\mathrm{2}} } \:\:\:{with}\:\:{x}\in\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$${prove}\:{that}\:\:{f}\left({x}\right)\:\sim\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{−{ln}\left({x}\right)}}\:\left({x}\:\rightarrow\mathrm{1}^{−} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *