Question Number 58774 by maxmathsup by imad last updated on 29/Apr/19

Commented by maxmathsup by imad last updated on 01/May/19
![1) we have f(x) =∫_(π/3) ^(π/2) (dθ/(1+x ((2tan((θ/2)))/(1−tan^2 ((θ/2)))))) =_(tan((θ/2))=t) ∫_(1/( (√3))) ^1 (1/(1+((2xt)/(1−t^2 )))) ((2dt)/(1+t^2 )) = ∫_(1/( (√3))) ^1 ((2(1−t^2 )dt)/((1−t^2 +2xt)(1+t^2 ))) =∫_(1/( (√3))) ^1 ((2(t^2 −1))/((t^2 −2xt−1)(t^2 +1))) dt roots of t^2 −2xt −1 →Δ^′ =x^2 +1⇒ t_1 =x+(√(1+x^2 )) and t_2 =x−(√(1+x^2 )) let decompose F(t) =((2(t^2 −1))/((t^2 −2xt −1)(t^2 +1))) ⇒F(t) =(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2 +1)) =((2(t^2 −1))/((t−t_1 )(t−t_2 )(t^2 +1))) a =lim_(t→t_1 ) (t−t_1 )F(t) =((2(t_1 ^2 −1))/((t_1 −t_2 )(t_1 ^2 +1))) =((2(t_1 ^2 −1))/(2(√(1+x^2 ))(t_1 ^2 +1))) b =lim_(t→t_2 ) (t−t_2 )F(t) =((2(t_2 ^2 −1))/(−2(√(1+x^2 ))(t_2 ^2 +1))) lim_(t→+∞) tF(t) =0 =a+b +c ⇒c =−a−b ⇒F(t) =(a/(t−t_1 )) +(b/(t−t_2 )) +(((−a−b)t +d)/(t^2 +1)) F(0) =2 =−(a/t_1 ) −(b/t_2 ) +d ⇒d =(a/t_1 ) +(b/t_2 ) +2 ⇒ ∫_(1/( (√3))) ^1 F(t)dt =a∫_(1/( (√3))) ^1 (dt/(t−t_1 )) +b ∫_(1/( (√3))) ^1 (dt/(t−t_2 )) −((a+b)/2) ∫_(1/( (√3))) ^1 ((2dt)/(t^2 +1)) +d ∫_(1/( (√3))) ^1 (dt/(t^2 +1)) =[aln∣t−t_1 ∣ +bln∣t−t_2 ∣]_(1/( (√3))) ^1 −((a+b)/2)[ln(t^2 +1)]_(1/( (√3))) ^1 + d [arctan(t)]_(1/( (√3))) ^1 =aln∣1−t_1 ∣+bln∣1−t_2 ∣−aln∣(1/( (√3))) −t_1 ∣−bln∣(1/( (√3)))−t_2 ∣−((a+b)/2){ln(2)−ln((4/3))} +d {(π/4) −(π/6)}=aln∣((1−t_1 )/((1/( (√3)))−t_1 ))∣ +bln∣((1−t_2 )/((1/( (√3)))−t_2 ))∣ −((a+b)/2)(ln(3)−ln(2)) +((πd)/(12)) a =((2( (x+(√(1+x^2 )))^2 −1))/(2(√(1+x^2 ))( (x+(√(1+x^2 )))^2 +1))) =(({ x^2 +2x(√(1+x^2 )) + x^2 })/( (√(1+x^2 ))(x^2 +2x(√(1+x^2 )) +x^2 +2))) =(({x^2 +x(√(1+x^2 ))})/( (√(1+x^2 )){x^2 +x(√(1+x^2 +1})))) b =((2( (x−(√(1+x^2 )))^2 −1))/(−2(√(1+x^2 ))( (x−(√(1+x^2 )))^2 +1))) =− ((x^2 −2x(√(1+x^2 )) +x^2 )/( (√(1+x^2 ))(x^2 −2x(√(1+x^2 )) +x^2 +2))) =−(((x^2 −x(√(1+x^2 ))))/( (√(1+x^2 ))( x^2 −x(√(1+x^2 +1))+1))) ....be continued....](https://www.tinkutara.com/question/Q58883.png)
Commented by maxmathsup by imad last updated on 01/May/19

Commented by maxmathsup by imad last updated on 01/May/19
![4) let A =∫_(π/3) ^(π/2) (dθ/(1+2tanθ)) ⇒ A =∫_(π/3) ^(π/2) (dθ/(1+2 ((2tan((θ/2)))/(1−tan^2 ((θ/2)))))) A =_(tan((θ/2)) =t) ∫_(1/( (√3))) ^1 (1/(1+((4t)/(1−t^2 )))) ((2dt)/(1+t^2 )) =∫_(1/( (√3))) ^1 ((2(1−t^2 ))/((1−t^2 +4t)(1+t^2 ))) dt =∫_(1/( (√3))) ^1 ((2(t^2 −1))/((t^2 −4t−1)(t^2 +1))) dt let decompose F(t) =((2(t^2 −1))/((t^2 −4t−1)(t^2 +1))) rootf t^2 −4t−1 →Δ^′ =4+1 =5 ⇒t_1 =2+(√5) and t_2 =2−(√5) ⇒ F(t) = (a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2 +1)) =((2(t^2 −1))/((t−t_1 )(t−t_2 )(t^2 +1))) a =lim_(t→t_1 ) (t−t_1 )F(t) = ((2(t_1 ^2 −1))/(2(√5)(t_1 ^2 +1))) =(((2+(√5))^2 −1)/( (√5)( (2+(√5))^2 +1))) =((4 +4(√5)+5−1)/( (√5)( 4 +4(√5) +5+1))) =((8 +4(√5))/( (√5)(10 +4(√5)))) =((4 +2(√5))/( (√5)( 5 +2(√5)))) b =lim_(t→t_2 ) (t−t_2 )F(t) =((2(t_2 ^2 −1))/(−2(√5)( t_2 ^2 +1))) =−(((2−(√5))^2 −1)/( (√5)((2−(√5))^2 +1))) =−((4−4(√5)+5 −1)/( (√5)( 4−4(√5) +5 +1))) =−((8−4(√5))/( (√5)(10−4(√5)))) =−((4−2(√5))/( (√5)(5 −2(√5)))) =((−4 +2(√5))/( (√5)( 5−2(√5)))) lim_(t→+∞) tF(t) =0 =a+b +c ⇒c =−(a+b) F(0) =−(a/t_1 ) −(b/t_2 ) +d =2 ⇒d =2 +(a/t_1 ) +(b/t_2 ) ⇒ ∫_(1/( (√3))) ^1 F(t)dt =a ∫_(1/( (√3))) ^1 (dt/(t−t_1 )) +b ∫_(1/( (√3))) ^1 (dt/(t−t_2 )) +(c/2) ∫_(1/( (√3))) ^1 ((2t)/(t^2 +1)) dt +d ∫_(1/( (√3))) ^1 (dt/(1+t^2 )) =[aln∣t−t_1 ∣ +bln∣t−t_2 ∣ +(c/2)ln(t^2 +1) +darctan(t)]_(1/( (√3))) ^1 =a ln∣1−t_1 ∣ +bln∣1−t_2 ∣ +(c/2)ln(2) + (dπ/4) −aln∣(1/( (√3))) −t_1 ∣−b ln∣(1/( (√3))) −t_2 ∣ −(c/2) ln((4/3))−(dπ/6) ....](https://www.tinkutara.com/question/Q58951.png)