Menu Close

let-f-x-pi-3-pi-2-d-1-xtan-with-x-real-1-find-a-explicit-form-for-f-x-2-determine-also-g-x-pi-3-pi-2-tan-1-xtan-2-d-3-let-U-n-x-f-n-x-give-U-n-x-




Question Number 58774 by maxmathsup by imad last updated on 29/Apr/19
let f(x) =∫_(π/3) ^(π/2)   (dθ/(1+xtanθ))   with x real  1) find a explicit form for f(x)  2) determine also g(x) =∫_(π/3) ^(π/2)    ((tanθ)/((1+xtanθ)^2 )) dθ  3) let U_n (x) =f^((n)) (x)  give U_n (x) at form of integral.  4) calculate ∫_(π/3) ^(π/2)    (dθ/(1+2tanθ))  and  ∫_(π/3) ^(π/2)    ((tanθ dθ)/((1+2tanθ)^2 ))
letf(x)=π3π2dθ1+xtanθwithxreal1)findaexplicitformforf(x)2)determinealsog(x)=π3π2tanθ(1+xtanθ)2dθ3)letUn(x)=f(n)(x)giveUn(x)atformofintegral.4)calculateπ3π2dθ1+2tanθandπ3π2tanθdθ(1+2tanθ)2
Commented by maxmathsup by imad last updated on 01/May/19
1) we have f(x) =∫_(π/3) ^(π/2)    (dθ/(1+x ((2tan((θ/2)))/(1−tan^2 ((θ/2)))))) =_(tan((θ/2))=t)      ∫_(1/( (√3))) ^1     (1/(1+((2xt)/(1−t^2 )))) ((2dt)/(1+t^2 ))  = ∫_(1/( (√3))) ^1      ((2(1−t^2 )dt)/((1−t^2  +2xt)(1+t^2 ))) =∫_(1/( (√3))) ^1    ((2(t^2 −1))/((t^2 −2xt−1)(t^2  +1))) dt  roots of  t^2 −2xt −1 →Δ^′ =x^2  +1⇒ t_1 =x+(√(1+x^2 ))  and t_2 =x−(√(1+x^2   )) let decompose  F(t) =((2(t^2 −1))/((t^2 −2xt −1)(t^2 +1))) ⇒F(t) =(a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2  +1)) =((2(t^2 −1))/((t−t_1 )(t−t_2 )(t^2  +1)))  a =lim_(t→t_1 ) (t−t_1 )F(t) =((2(t_1 ^2 −1))/((t_1 −t_2 )(t_1 ^2  +1))) =((2(t_1 ^2 −1))/(2(√(1+x^2 ))(t_1 ^2  +1)))  b =lim_(t→t_2 ) (t−t_2 )F(t) =((2(t_2 ^2 −1))/(−2(√(1+x^2 ))(t_2 ^2  +1)))  lim_(t→+∞) tF(t) =0 =a+b +c ⇒c =−a−b ⇒F(t) =(a/(t−t_1 )) +(b/(t−t_2 )) +(((−a−b)t +d)/(t^2  +1))  F(0) =2 =−(a/t_1 ) −(b/t_2 ) +d ⇒d =(a/t_1 ) +(b/t_2 ) +2 ⇒  ∫_(1/( (√3))) ^1  F(t)dt =a∫_(1/( (√3))) ^1   (dt/(t−t_1 )) +b ∫_(1/( (√3))) ^1   (dt/(t−t_2 )) −((a+b)/2) ∫_(1/( (√3))) ^1   ((2dt)/(t^2  +1)) +d ∫_(1/( (√3))) ^1   (dt/(t^2  +1))  =[aln∣t−t_1 ∣ +bln∣t−t_2 ∣]_(1/( (√3))) ^1  −((a+b)/2)[ln(t^2  +1)]_(1/( (√3))) ^1   + d [arctan(t)]_(1/( (√3))) ^1   =aln∣1−t_1 ∣+bln∣1−t_2 ∣−aln∣(1/( (√3))) −t_1 ∣−bln∣(1/( (√3)))−t_2 ∣−((a+b)/2){ln(2)−ln((4/3))}  +d {(π/4) −(π/6)}=aln∣((1−t_1 )/((1/( (√3)))−t_1 ))∣ +bln∣((1−t_2 )/((1/( (√3)))−t_2 ))∣ −((a+b)/2)(ln(3)−ln(2)) +((πd)/(12))  a =((2( (x+(√(1+x^2 )))^2 −1))/(2(√(1+x^2 ))( (x+(√(1+x^2 )))^2  +1))) =(({ x^2  +2x(√(1+x^2 )) + x^2 })/( (√(1+x^2 ))(x^2  +2x(√(1+x^2 )) +x^2  +2)))  =(({x^2  +x(√(1+x^2 ))})/( (√(1+x^2 )){x^2  +x(√(1+x^2  +1}))))  b =((2( (x−(√(1+x^2 )))^2 −1))/(−2(√(1+x^2 ))( (x−(√(1+x^2 )))^2  +1))) =− ((x^2 −2x(√(1+x^2 )) +x^2 )/( (√(1+x^2 ))(x^2 −2x(√(1+x^2 )) +x^2  +2)))  =−(((x^2 −x(√(1+x^2 ))))/( (√(1+x^2 ))( x^2 −x(√(1+x^2  +1))+1)))   ....be continued....
1)wehavef(x)=π3π2dθ1+x2tan(θ2)1tan2(θ2)=tan(θ2)=t13111+2xt1t22dt1+t2=1312(1t2)dt(1t2+2xt)(1+t2)=1312(t21)(t22xt1)(t2+1)dtrootsoft22xt1Δ=x2+1t1=x+1+x2andt2=x1+x2letdecomposeF(t)=2(t21)(t22xt1)(t2+1)F(t)=att1+btt2+ct+dt2+1=2(t21)(tt1)(tt2)(t2+1)a=limtt1(tt1)F(t)=2(t121)(t1t2)(t12+1)=2(t121)21+x2(t12+1)b=limtt2(tt2)F(t)=2(t221)21+x2(t22+1)limt+tF(t)=0=a+b+cc=abF(t)=att1+btt2+(ab)t+dt2+1F(0)=2=at1bt2+dd=at1+bt2+2131F(t)dt=a131dttt1+b131dttt2a+b21312dtt2+1+d131dtt2+1=[alntt1+blntt2]131a+b2[ln(t2+1)]131+d[arctan(t)]131=aln1t1+bln1t2aln13t1bln13t2a+b2{ln(2)ln(43)}+d{π4π6}=aln1t113t1+bln1t213t2a+b2(ln(3)ln(2))+πd12a=2((x+1+x2)21)21+x2((x+1+x2)2+1)={x2+2x1+x2+x2}1+x2(x2+2x1+x2+x2+2)={x2+x1+x2}1+x2{x2+x1+x2+1}b=2((x1+x2)21)21+x2((x1+x2)2+1)=x22x1+x2+x21+x2(x22x1+x2+x2+2)=(x2x1+x2)1+x2(x2x1+x2+1+1).becontinued.
Commented by maxmathsup by imad last updated on 01/May/19
2) we have f^′ (x) =−∫_(π/3) ^(π/2)   ((tanθ dθ)/((1+xtanθ)^2 )) =−g(x) ⇒g(x)=−f^′ (x)  rest to calculate  f^′ (x)  3) we have f^((1)) (x) =(−1) ∫_(π/3) ^(π/2)    ((tanθ)/((1+xtanθ)^2 )) dθ ⇒f^((2)) (x) =(−1)^2  ∫_(π/3) ^(π/2) ((2(1+xtanθ))/((1+xtanθ)^4 )) tan^2 θ dθ  =2.(−1)^2  ∫_(π/3) ^(π/2)     ((tan^2 θ)/((1+xtanθ)^3 )) dθ   let suppose f^((n)) (x) =(−1)^n n! ∫_(π/3) ^(π/2)   ((tan^n θ)/((1+xtanθ)^(n+1) )) dθ  ⇒f^((n+1)) (x) =(−1)^(n+1) n! ∫_(π/3) ^(π/2)    (((n+1)tanθ (1+xtanθ)^n tan^n θ)/((1+xtanθ)^(2n+2) )) dθ  =(−1)^(n+1) (n+1)! ∫_(π/3) ^(π/2)     ((tan^(n+1) θ)/((1+xtanθ)^(n+2) )) dθ    so the result is proved .
2)wehavef(x)=π3π2tanθdθ(1+xtanθ)2=g(x)g(x)=f(x)resttocalculatef(x)3)wehavef(1)(x)=(1)π3π2tanθ(1+xtanθ)2dθf(2)(x)=(1)2π3π22(1+xtanθ)(1+xtanθ)4tan2θdθ=2.(1)2π3π2tan2θ(1+xtanθ)3dθletsupposef(n)(x)=(1)nn!π3π2tannθ(1+xtanθ)n+1dθf(n+1)(x)=(1)n+1n!π3π2(n+1)tanθ(1+xtanθ)ntannθ(1+xtanθ)2n+2dθ=(1)n+1(n+1)!π3π2tann+1θ(1+xtanθ)n+2dθsotheresultisproved.
Commented by maxmathsup by imad last updated on 01/May/19
4) let A =∫_(π/3) ^(π/2)   (dθ/(1+2tanθ)) ⇒ A  =∫_(π/3) ^(π/2)   (dθ/(1+2 ((2tan((θ/2)))/(1−tan^2 ((θ/2))))))  A =_(tan((θ/2)) =t)        ∫_(1/( (√3))) ^1     (1/(1+((4t)/(1−t^2 )))) ((2dt)/(1+t^2 )) =∫_(1/( (√3))) ^1   ((2(1−t^2 ))/((1−t^2  +4t)(1+t^2 ))) dt  =∫_(1/( (√3))) ^1    ((2(t^2 −1))/((t^2 −4t−1)(t^2  +1))) dt   let decompose F(t) =((2(t^2 −1))/((t^2 −4t−1)(t^2  +1)))  rootf t^2 −4t−1 →Δ^′ =4+1 =5 ⇒t_1 =2+(√5)  and t_2 =2−(√5)  ⇒  F(t) = (a/(t−t_1 )) +(b/(t−t_2 )) +((ct +d)/(t^2  +1)) =((2(t^2 −1))/((t−t_1 )(t−t_2 )(t^2  +1)))  a =lim_(t→t_1 ) (t−t_1 )F(t) = ((2(t_1 ^2 −1))/(2(√5)(t_1 ^2  +1))) =(((2+(√5))^2 −1)/( (√5)( (2+(√5))^2  +1)))  =((4 +4(√5)+5−1)/( (√5)( 4 +4(√5) +5+1))) =((8 +4(√5))/( (√5)(10 +4(√5)))) =((4 +2(√5))/( (√5)( 5 +2(√5))))  b =lim_(t→t_2 )  (t−t_2 )F(t) =((2(t_2 ^2 −1))/(−2(√5)( t_2 ^2  +1))) =−(((2−(√5))^2 −1)/( (√5)((2−(√5))^2  +1)))  =−((4−4(√5)+5 −1)/( (√5)( 4−4(√5) +5 +1))) =−((8−4(√5))/( (√5)(10−4(√5)))) =−((4−2(√5))/( (√5)(5 −2(√5)))) =((−4 +2(√5))/( (√5)( 5−2(√5))))  lim_(t→+∞)   tF(t) =0 =a+b +c ⇒c =−(a+b)  F(0) =−(a/t_1 ) −(b/t_2 ) +d =2 ⇒d =2 +(a/t_1 ) +(b/t_2 ) ⇒  ∫_(1/( (√3))) ^1   F(t)dt =a ∫_(1/( (√3))) ^1   (dt/(t−t_1 )) +b ∫_(1/( (√3))) ^1   (dt/(t−t_2 )) +(c/2) ∫_(1/( (√3))) ^1  ((2t)/(t^2  +1)) dt  +d ∫_(1/( (√3))) ^1   (dt/(1+t^2 ))  =[aln∣t−t_1 ∣ +bln∣t−t_2 ∣ +(c/2)ln(t^2  +1) +darctan(t)]_(1/( (√3))) ^1   =a ln∣1−t_1 ∣ +bln∣1−t_2 ∣ +(c/2)ln(2) + (dπ/4) −aln∣(1/( (√3))) −t_1 ∣−b ln∣(1/( (√3))) −t_2 ∣  −(c/2) ln((4/3))−(dπ/6) ....
4)letA=π3π2dθ1+2tanθA=π3π2dθ1+22tan(θ2)1tan2(θ2)A=tan(θ2)=t13111+4t1t22dt1+t2=1312(1t2)(1t2+4t)(1+t2)dt=1312(t21)(t24t1)(t2+1)dtletdecomposeF(t)=2(t21)(t24t1)(t2+1)rootft24t1Δ=4+1=5t1=2+5andt2=25F(t)=att1+btt2+ct+dt2+1=2(t21)(tt1)(tt2)(t2+1)a=limtt1(tt1)F(t)=2(t121)25(t12+1)=(2+5)215((2+5)2+1)=4+45+515(4+45+5+1)=8+455(10+45)=4+255(5+25)b=limtt2(tt2)F(t)=2(t221)25(t22+1)=(25)215((25)2+1)=445+515(445+5+1)=8455(1045)=4255(525)=4+255(525)limt+tF(t)=0=a+b+cc=(a+b)F(0)=at1bt2+d=2d=2+at1+bt2131F(t)dt=a131dttt1+b131dttt2+c21312tt2+1dt+d131dt1+t2=[alntt1+blntt2+c2ln(t2+1)+darctan(t)]131=aln1t1+bln1t2+c2ln(2)+dπ4aln13t1bln13t2c2ln(43)dπ6.

Leave a Reply

Your email address will not be published. Required fields are marked *