let-f-x-pi-4-pi-3-dt-2-xsint-1-find-a-explicit-form-of-f-x-2-determine-also-g-x-pi-4-pi-3-sint-2-xsint-2-dt-3-find-the-value-of-pi-4-pi-3-dt-2-3sint-and- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 58487 by Mr X pcx last updated on 23/Apr/19 letf(x)=∫π4π3dt2+xsint1)findaexplicitformoff(x)2)determinealsog(x)=∫π4π3sint(2+xsint)2dt3)findthevalueof∫π4π3dt2+3sintand∫π4π3sint(2+3sint)2dt Commented by maxmathsup by imad last updated on 24/Apr/19 changementtan(t2)=ugivef(x)=∫2−1132du(1+u2)(2+x2u1+u2)=∫2−1132du2(1+u2)+2xu=∫2−113duu2+2xu+1=∫2−113du(u+x)2+1−x2case1if1−x2>0⇒∣x∣<1wedothechangementu+x=1−x2α⇒f(x)=∫2−1+x1−x213+x1−x21−x2dα(1−x2)(1+α2)=11−x2[arctanα]2−1+x1−x213+x1−x2⇒f(x)=11−x2{arctan(1+x331−x2)−arctan(2−1+x1−x2)}case2if1−x2<0⇒∣x∣>1⇒f(x)=∫2−113du(u+x)2−(x2−1)2=∫2−113du(u+x+x2−1)(u+x−x2−1)=12x2−1∫2−113{1u+x−x2−1−1u+x+x2−1}du=12x2−1[ln∣u+x−x2−1u+x+x2−1∣]u=2−1u=13=12x2−1{ln∣13+x−x2−113+x+x2−1∣−ln∣2−1+x−x2−12−1+x+x2−1∣}. Commented by maxmathsup by imad last updated on 25/Apr/19 2)wehavef′(x)=∫π4π3−sint(2+xsint)2dt=−g(x)⇒g(x)=−f′(x)resttocalculatef′(x) Commented by maxmathsup by imad last updated on 25/Apr/19 3)∫π4π3dt2+3cost=f(3)=1232−1{ln∣13+3−32−113+3+32−1∣−ln∣2−1+3−32−12−1+3+32−1∣=142{ln∣13+3−2213+3+22∣−ln∣2−22+32∣. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-189558Next Next post: Question-189557 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.