Question Number 98426 by mathmax by abdo last updated on 13/Jun/20

Answered by maths mind last updated on 14/Jun/20
![f(x)=∫_1 ^(√3) (dy/((x+y)(1+y^2 ))) =(1/(1+x^2 ))∫_1 ^(√3) (((x+y)(x−y)+1+y^2 )/((x+y)(1+y^2 )))dy =(1/(1+x^2 ))∫_1 ^(√3) {(x/(1+y^2 ))−(y/(1+y^2 ))+(1/(x+y))}dy =(x/(1+x^2 ))[(π/(12))]−((ln(2))/(2(1+x^2 )))+((ln(((x+(√3))/(x+1))))/((1+x^2 ))) g(x)=−f′(x) =−{((1−x^2 )/((1+x^2 )^2 ))(π/(12))+((xln(2))/((1+x^2 )^2 ))+(1/((1+x^2 )))[(1/(x+(√3)))−(1/(x+1))]−((2xln(((x+(√3))/(x+1))))/((1+x^2 )^2 ))} 3 ∫(dx/(2+tg(x)))=f(2)=(π/(30))−((ln(2))/(10))+((ln(((2+(√3))/3)))/5) ∫(dx/((2+tg(x))^2 ))=−{((−π)/(100)).+((2ln(2))/(25))+(1/5)((1/(2+(√3)))−(1/3))−((4ln(((2+(√3))/3)))/(25))}](https://www.tinkutara.com/question/Q98556.png)
Commented by abdomathmax last updated on 14/Jun/20

Commented by maths mind last updated on 14/Jun/20

Answered by abdomathmax last updated on 14/Jun/20
![1) f(x) =∫_(π/4) ^(π/3) (dt/(x+tant)) changement tant =u give f(x) =∫_1 ^(√3) (du/((1+u^2 )(x+u))) let decompose F(u) =(1/((u+x)(u^2 +1))) ⇒F(u) =(a/(u+x)) +((bu +c)/(u^2 +1)) a =(1/(x^2 +1)) lim_(u→+∞) uF(u) =0 =a+b ⇒b=−(1/(x^2 +1)) F(0) =(1/x) =(a/x) +c ⇒1 =a+xc ⇒xc =1−a =1−(1/(x^2 +1)) =(x^2 /(1+x^2 )) ⇒c =(x/(1+x^2 )) ⇒ F(u) =(1/((x^2 +1)(u+x))) +((−(1/(x^2 +1))u +(x/(1+x^2 )))/(u^2 +1)) ⇒f(x) =(1/(x^2 +1)) ∫_1 ^(√3) (du/(u+x)) −(1/(x^2 +1)) ∫_1 ^(√3) ((u−x)/(u^2 +1)) du =(1/(x^2 +1))[ln∣u+x∣]_1 ^(√3) −(1/(2(x^2 +1))) [ln(u^2 +1)]_1 ^(√3) +(x/(x^2 +1)) [arctanu]_1 ^(√3) =(1/(x^2 +1)){ln∣(√3)+x∣−ln∣1+x∣} −((2ln(2))/(2(x^2 +1))) +(x/(x^2 +1))×(π/(12)) =(1/(x^2 +1))ln∣((x+(√3))/(x+1))∣−((ln2)/(x^2 +1)) +((πx)/(12(x^2 +1)))](https://www.tinkutara.com/question/Q98566.png)
Commented by abdomathmax last updated on 14/Jun/20

Commented by mathmax by abdo last updated on 14/Jun/20

Commented by mathmax by abdo last updated on 14/Jun/20
