Menu Close

let-f-x-pi-4-pi-3-dt-x-tant-calculate-f-x-2-explicit-g-x-pi-4-pi-3-dt-x-tant-2-3-find-the-value-of-integrals-pi-4-pi-3-dt-2-tant-and-pi-4-pi-3-dt-2-tan




Question Number 98426 by mathmax by abdo last updated on 13/Jun/20
let f(x) =∫_(π/4) ^(π/3)  (dt/(x+tant))  calculate f(x)  2)explicit g(x) =∫_(π/4) ^(π/3)  (dt/((x+tant)^2 ))  3) find the value of integrals ∫_(π/4) ^(π/3)  (dt/(2+tant)) and ∫_(π/4) ^(π/3)  (dt/((2+tant)^2 ))
letf(x)=π4π3dtx+tantcalculatef(x)2)explicitg(x)=π4π3dt(x+tant)23)findthevalueofintegralsπ4π3dt2+tantandπ4π3dt(2+tant)2
Answered by maths mind last updated on 14/Jun/20
f(x)=∫_1 ^(√3) (dy/((x+y)(1+y^2 )))  =(1/(1+x^2 ))∫_1 ^(√3) (((x+y)(x−y)+1+y^2 )/((x+y)(1+y^2 )))dy  =(1/(1+x^2 ))∫_1 ^(√3) {(x/(1+y^2 ))−(y/(1+y^2 ))+(1/(x+y))}dy  =(x/(1+x^2 ))[(π/(12))]−((ln(2))/(2(1+x^2 )))+((ln(((x+(√3))/(x+1))))/((1+x^2 )))  g(x)=−f′(x)  =−{((1−x^2 )/((1+x^2 )^2 ))(π/(12))+((xln(2))/((1+x^2 )^2 ))+(1/((1+x^2 )))[(1/(x+(√3)))−(1/(x+1))]−((2xln(((x+(√3))/(x+1))))/((1+x^2 )^2 ))}  3  ∫(dx/(2+tg(x)))=f(2)=(π/(30))−((ln(2))/(10))+((ln(((2+(√3))/3)))/5)  ∫(dx/((2+tg(x))^2 ))=−{((−π)/(100)).+((2ln(2))/(25))+(1/5)((1/(2+(√3)))−(1/3))−((4ln(((2+(√3))/3)))/(25))}
f(x)=13dy(x+y)(1+y2)=11+x213(x+y)(xy)+1+y2(x+y)(1+y2)dy=11+x213{x1+y2y1+y2+1x+y}dy=x1+x2[π12]ln(2)2(1+x2)+ln(x+3x+1)(1+x2)g(x)=f(x)={1x2(1+x2)2π12+xln(2)(1+x2)2+1(1+x2)[1x+31x+1]2xln(x+3x+1)(1+x2)2}3dx2+tg(x)=f(2)=π30ln(2)10+ln(2+33)5dx(2+tg(x))2={π100.+2ln(2)25+15(12+313)4ln(2+33)25}
Commented by abdomathmax last updated on 14/Jun/20
thanks sir.
thankssir.
Commented by maths mind last updated on 14/Jun/20
withe pleaser
withepleaser
Answered by abdomathmax last updated on 14/Jun/20
1) f(x) =∫_(π/4) ^(π/3)  (dt/(x+tant))  changement tant =u give  f(x) =∫_1 ^(√3)   (du/((1+u^2 )(x+u))) let decompose  F(u) =(1/((u+x)(u^2  +1))) ⇒F(u) =(a/(u+x)) +((bu +c)/(u^2  +1))  a =(1/(x^2  +1))  lim_(u→+∞) uF(u) =0 =a+b ⇒b=−(1/(x^2  +1))  F(0) =(1/x) =(a/x) +c ⇒1 =a+xc ⇒xc =1−a  =1−(1/(x^2 +1)) =(x^2 /(1+x^2 )) ⇒c =(x/(1+x^2 )) ⇒  F(u) =(1/((x^2  +1)(u+x))) +((−(1/(x^2  +1))u +(x/(1+x^2 )))/(u^2  +1))  ⇒f(x) =(1/(x^2 +1)) ∫_1 ^(√3)  (du/(u+x))  −(1/(x^2  +1)) ∫_1 ^(√3)  ((u−x)/(u^2  +1)) du  =(1/(x^2  +1))[ln∣u+x∣]_1 ^(√3)   −(1/(2(x^2  +1))) [ln(u^2  +1)]_1 ^(√3)   +(x/(x^2  +1)) [arctanu]_1 ^(√3)   =(1/(x^2  +1)){ln∣(√3)+x∣−ln∣1+x∣}  −((2ln(2))/(2(x^2  +1))) +(x/(x^2  +1))×(π/(12))  =(1/(x^2  +1))ln∣((x+(√3))/(x+1))∣−((ln2)/(x^2  +1)) +((πx)/(12(x^2  +1)))
1)f(x)=π4π3dtx+tantchangementtant=ugivef(x)=13du(1+u2)(x+u)letdecomposeF(u)=1(u+x)(u2+1)F(u)=au+x+bu+cu2+1a=1x2+1limu+uF(u)=0=a+bb=1x2+1F(0)=1x=ax+c1=a+xcxc=1a=11x2+1=x21+x2c=x1+x2F(u)=1(x2+1)(u+x)+1x2+1u+x1+x2u2+1f(x)=1x2+113duu+x1x2+113uxu2+1du=1x2+1[lnu+x]1312(x2+1)[ln(u2+1)]13+xx2+1[arctanu]13=1x2+1{ln3+xln1+x}2ln(2)2(x2+1)+xx2+1×π12=1x2+1lnx+3x+1ln2x2+1+πx12(x2+1)
Commented by abdomathmax last updated on 14/Jun/20
2) we have f^′ (x) =−∫_(π/4) ^(π/3)   (dt/((3+tant)^2 )) =−g(x)  ⇒g(x) =−f^′ (x)  we have  f(x) =(1/(x^2  +1)){ πx−ln2 +ln∣((x+(√3))/(x+1))∣} ⇒  f^′ (x) =−((2x)/((x^(2 ) +1)^2 )){ πx−ln(2)+ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π+(((((x+(√3))/(x+1)))^′ )/((x+(√3))/(x+1)))}  =((−2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π +(((x+1))/(x+(√3)))×((x+1−(x+(√3)))/((x+1)^2 ))}  =((−2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}  +(1/(x^2  +1)){ π +((1−(√3))/((x+(√3))(x+1)))}
2)wehavef(x)=π4π3dt(3+tant)2=g(x)g(x)=f(x)wehavef(x)=1x2+1{πxln2+lnx+3x+1}f(x)=2x(x2+1)2{πxln(2)+lnx+3x+1}+1x2+1{π+(x+3x+1)x+3x+1}=2x(x2+1)2{πxln2+lnx+3x+1}+1x2+1{π+(x+1)x+3×x+1(x+3)(x+1)2}=2x(x2+1)2{πxln2+lnx+3x+1}+1x2+1{π+13(x+3)(x+1)}
Commented by mathmax by abdo last updated on 14/Jun/20
⇒g(x) =((2x)/((x^2  +1)^2 )){πx−ln2 +ln∣((x+(√3))/(x+1))∣}−(1/(x^2  +1)){π +((1−(√3))/((x+(√3))(x+1)))}
g(x)=2x(x2+1)2{πxln2+lnx+3x+1}1x2+1{π+13(x+3)(x+1)}
Commented by mathmax by abdo last updated on 14/Jun/20
3) ∫_(π/4) ^(π/3)   (dt/(2+tant)) =f(2) =(1/5)ln(((2+(√3))/3))−((ln2)/5) +((2π)/(12(5)))  =(1/5)ln(((2+(√3))/3))−((ln(2))/5) +(π/(30))
3)π4π3dt2+tant=f(2)=15ln(2+33)ln25+2π12(5)=15ln(2+33)ln(2)5+π30

Leave a Reply

Your email address will not be published. Required fields are marked *