Menu Close

let-f-x-sin-2x-1-find-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 40260 by maxmathsup by imad last updated on 17/Jul/18
let f(x)=sin(2x)  1) find f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie .
letf(x)=sin(2x)1)findf(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 18/Jul/18
1) we have f(x)=2sin(x)cos(x) ⇒f^((n)) (x)=2Σ_(k=0) ^n   C_n ^k   (sinx)^((k)) (cosx)^((n−k))   =2Σ_(k=0) ^n    C_n ^k   sin(x+((kπ)/2))cos(x +(((n−k)π)/2)) ⇒  f^((n)) (0) = 2 Σ_(k=0) ^n   C_n ^k  sin(((kπ)/2))cos((((n−k)π)/2))  =2 Σ_(p=0) ^([((n−1)/2)])    C_n ^(2p+1)   sin((((2p+1)π)/2))cos((((n−2p−1)π)/2))  =2Σ_(p=0) ^([((n−1)/2)])  (−1)^p  C_n ^(2p+1)  cos( (((n−1)π)/2) −pπ)   = 2 Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  cos((((n−1)π)/2))  2) f(x) = Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n  =Σ_(n=1) ^∞   ((f^((n)) (0))/(n!)) x^n   f(x)= Σ_(n=1) ^∞    (2/(n!)) cos((((n−1)π)/2)) (Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1) ) x^n
1)wehavef(x)=2sin(x)cos(x)f(n)(x)=2k=0nCnk(sinx)(k)(cosx)(nk)=2k=0nCnksin(x+kπ2)cos(x+(nk)π2)f(n)(0)=2k=0nCnksin(kπ2)cos((nk)π2)=2p=0[n12]Cn2p+1sin((2p+1)π2)cos((n2p1)π2)=2p=0[n12](1)pCn2p+1cos((n1)π2pπ)=2p=0[n12]Cn2p+1cos((n1)π2)2)f(x)=n=0f(n)(0)n!xn=n=1f(n)(0)n!xnf(x)=n=12n!cos((n1)π2)(p=0[n12]Cn2p+1)xn
Commented by maxmathsup by imad last updated on 18/Jul/18
2) another method  we have sint =Im( e^(it) )=Im( Σ_(n=0) ^∞  (((it)^n )/(n!)))  = Im( Σ_(n=0) ^∞   (((−1)^n  t^(2n) )/((2n)!)) +iΣ_(n=0) ^∞     (((−1)^n  t^(2n+1) )/((2n+1)!))) =Σ_(n=0) ^∞   (((−1)^n  t^(2n+1) )/((2n+1)!))  ⇒  sin(2x) =Σ_(n=0) ^∞   (((−1)^n  2^(2n+1)  x^(2n+1) )/((2n+1)!))  and the radius of convergence is R=+∞
2)anothermethodwehavesint=Im(eit)=Im(n=0(it)nn!)=Im(n=0(1)nt2n(2n)!+in=0(1)nt2n+1(2n+1)!)=n=0(1)nt2n+1(2n+1)!sin(2x)=n=0(1)n22n+1x2n+1(2n+1)!andtheradiusofconvergenceisR=+

Leave a Reply

Your email address will not be published. Required fields are marked *