Question Number 40260 by maxmathsup by imad last updated on 17/Jul/18
$${let}\:{f}\left({x}\right)={sin}\left(\mathrm{2}{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by maxmathsup by imad last updated on 18/Jul/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)=\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right)\:\Rightarrow{f}^{\left({n}\right)} \left({x}\right)=\mathrm{2}\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\left({sinx}\right)^{\left({k}\right)} \left({cosx}\right)^{\left({n}−{k}\right)} \\ $$$$=\mathrm{2}\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:{C}_{{n}} ^{{k}} \:\:{sin}\left({x}+\frac{{k}\pi}{\mathrm{2}}\right){cos}\left({x}\:+\frac{\left({n}−{k}\right)\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\mathrm{2}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}}\right){cos}\left(\frac{\left({n}−{k}\right)\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:\:{sin}\left(\frac{\left(\mathrm{2}{p}+\mathrm{1}\right)\pi}{\mathrm{2}}\right){cos}\left(\frac{\left({n}−\mathrm{2}{p}−\mathrm{1}\right)\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:{cos}\left(\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\:−{p}\pi\right) \\ $$$$\:=\:\mathrm{2}\:\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \:{cos}\left(\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right)\:{f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{2}}{{n}!}\:{cos}\left(\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\right)\:\left(\sum_{{p}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \:\:{C}_{{n}} ^{\mathrm{2}{p}+\mathrm{1}} \right)\:{x}^{{n}} \\ $$$$ \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 18/Jul/18
$$\left.\mathrm{2}\right)\:{another}\:{method}\:\:{we}\:{have}\:{sint}\:={Im}\left(\:{e}^{{it}} \right)={Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left({it}\right)^{{n}} }{{n}!}\right) \\ $$$$=\:{Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\:+{i}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:\Rightarrow \\ $$$${sin}\left(\mathrm{2}{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} \:{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:{and}\:{the}\:{radius}\:{of}\:{convergence}\:{is}\:{R}=+\infty \\ $$$$ \\ $$