Menu Close

let-f-x-sin-2x-x-a-a-x-with-a-gt-0-calculate-the-fourier-trsnsform-of-f-




Question Number 35992 by abdo mathsup 649 cc last updated on 26/May/18
let f(x)= ((sin(2x))/x) χ_(]−a,a[) (x)  with a>0  calculate the fourier trsnsform of f .
letf(x)=sin(2x)xχ]a,a[(x)witha>0calculatethefouriertrsnsformoff.
Commented by abdo mathsup 649 cc last updated on 27/May/18
F(f(x))= (1/( (√(2π)))) ∫_(−∞) ^(+∞)   f(t) e^(−ixt)  dt   = (1/( (√(2π)))) ∫_(−a) ^a  ((sin(2t))/t) e^(−ixt)  dt  = (1/( (√(2π)))) ∫_(−a) ^a  ((sin(2t))/t) cos(xt)dt  =(√((2/π) ))  ∫_0 ^a    ((sin(2t)cos(xt))/t)dt=(√(2/π)) w(x)  w(x)= ∫_0 ^a   ((sin(2t)cos(xt))/t)dt  w^′ (x) = −∫_0 ^a  sin(2t)sin(xt)dt  but  sin(2t)sin(xt)=(1/2){ cos(x−2)t−cos(x+2)t}⇒  w^′ (x) =−(1/2) {  ∫_0 ^a  cos(x−2)tdt −∫_0 ^a  cos(x+2)t dt}  = (1/2)[ (1/(x+2)) sin(x+2)t]_0 ^a  −(1/2)[(1/(x−2))sin(x−2)t]_0 ^a   = (1/(2x+4)) sin{(x+2)a} −(1/(2x−4))sin{(x−2)a}⇒  w(x) = ∫_0 ^x   ((sin{(t+2)a})/(2t+4))dt −∫_0 ^x  ((sin{(t−2)a})/(2t−4))dt +c  ( c=w(0)= ∫_0 ^a   ((sin(2t))/t)dt)...be continued...
F(f(x))=12π+f(t)eixtdt=12πaasin(2t)teixtdt=12πaasin(2t)tcos(xt)dt=2π0asin(2t)cos(xt)tdt=2πw(x)w(x)=0asin(2t)cos(xt)tdtw(x)=0asin(2t)sin(xt)dtbutsin(2t)sin(xt)=12{cos(x2)tcos(x+2)t}w(x)=12{0acos(x2)tdt0acos(x+2)tdt}=12[1x+2sin(x+2)t]0a12[1x2sin(x2)t]0a=12x+4sin{(x+2)a}12x4sin{(x2)a}w(x)=0xsin{(t+2)a}2t+4dt0xsin{(t2)a}2t4dt+c(c=w(0)=0asin(2t)tdt)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *