Question Number 94334 by mathmax by abdo last updated on 18/May/20
$${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$
Answered by abdomathmax last updated on 18/May/20
$$\left.\mathrm{1}\right)\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{sinx}}{\mathrm{x}}\:\Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\left(\mathrm{k}\right)} \left(\mathrm{sinx}\right)^{\left(\mathrm{n}−\mathrm{k}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{x}}\mathrm{sin}\left(\mathrm{x}+\frac{\mathrm{n}\pi}{\mathrm{2}}\right)\:+\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} \mathrm{k}!}{\mathrm{x}^{\mathrm{k}+\mathrm{1}} }\mathrm{sin}\left(\mathrm{x}+\frac{\left(\mathrm{n}−\mathrm{k}\right)\pi}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right)\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{sinx}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{2n}+\mathrm{1}} \:\Rightarrow \\ $$$$\frac{\mathrm{sinx}}{\mathrm{x}}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\mathrm{x}^{\mathrm{2n}} \\ $$