Menu Close

let-f-x-sinx-x-if-x-0-and-f-0-1-1-findf-n-x-and-f-n-0-2-developp-f-at-integr-serie-st-x-0-0-and-x-0-pi-2-




Question Number 94334 by mathmax by abdo last updated on 18/May/20
let f(x) =((sinx)/x)if x≠0  and f(0)=1  1) findf^((n)) (x) and f^((n)) (0)  2)developp f at integr serie st x_0 =0 and x_0 =(π/2)
letf(x)=sinxxifx0andf(0)=11)findf(n)(x)andf(n)(0)2)developpfatintegrseriestx0=0andx0=π2
Answered by abdomathmax last updated on 18/May/20
1)  we have f(x) =((sinx)/x) ⇒f^((n)) (x) =Σ_(k=0) ^n C_n ^k  ((1/x))^((k)) (sinx)^((n−k))   =(1/x)sin(x+((nπ)/2)) +Σ_(k=1) ^n  C_n ^k  (((−1)^k k!)/x^(k+1) )sin(x+(((n−k)π)/2))  2)  we have sinx =Σ_(n=0) ^∞ (((−1)^n )/((2n+1)!))x^(2n+1)  ⇒  ((sinx)/x) =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) x^(2n)
1)wehavef(x)=sinxxf(n)(x)=k=0nCnk(1x)(k)(sinx)(nk)=1xsin(x+nπ2)+k=1nCnk(1)kk!xk+1sin(x+(nk)π2)2)wehavesinx=n=0(1)n(2n+1)!x2n+1sinxx=n=0(1)n(2n+1)!x2n

Leave a Reply

Your email address will not be published. Required fields are marked *