Menu Close

let-F-x-u-x-v-x-f-x-t-dt-how-to-calculate-dF-dx-x-




Question Number 64355 by turbo msup by abdo last updated on 17/Jul/19
let F(x)=∫_(u(x)) ^(v(x{) f(x,t)dt  how to calculate  (dF/dx)(x)?
letF(x)=u(x)v(x{f(x,t)dthowtocalculatedFdx(x)?
Commented by MJS last updated on 17/Jul/19
I believe since we don′t know the “status” of  the constant factor x in ∫f(x, t)dt we cannot  give a general formula other than this one:  G(x)=∫_(u(x)) ^(v(x)) f(t)dt=F(v(x))−F(u(x))+C  (dG/dx)=F′(v(x))v′(x)−F′(u(x))u′(x)  trying these simple examples I could not see  a general formula  f(x, t)=x+t     G(x)=(v^2 /2)+vx−(u^2 /2)−ux        G′(x)=(v+x)v′−(u+x)u′  f(x, t)=xt     G(x)=(x/2)(v^2 −u^2 )        G′(x)=x(v′v−u′u)+(1/2)(v^2 −u^2 )  f(x, t)=(x/t)     G(x)=xln (v/u)        G′(x)=ln (v/u) +x(((v′)/v)−((u′)/u))  f(x, t)=t^x      G(x)=((v^(x+1) −u^(x+1) )/(x+1))        G′(x)=v^x (v′+((vln v)/(x+1))−(v/((x+1)^2 )))−u^x (u′+((uln u)/(x+1))−(u/((x+1)^2 )))  f(x, t)=x^t      G(x)=((x^v −x^u )/(ln x))        G′(x)=x^(v−1) (v′x+(v/(ln x))−(1/(ln^2  x)))−x^(u−1) (u′x+(u/(ln x))−(1/(ln^2  x)))
Ibelievesincewedontknowthestatusoftheconstantfactorxinf(x,t)dtwecannotgiveageneralformulaotherthanthisone:G(x)=v(x)u(x)f(t)dt=F(v(x))F(u(x))+CdGdx=F(v(x))v(x)F(u(x))u(x)tryingthesesimpleexamplesIcouldnotseeageneralformulaf(x,t)=x+tG(x)=v22+vxu22uxG(x)=(v+x)v(u+x)uf(x,t)=xtG(x)=x2(v2u2)G(x)=x(vvuu)+12(v2u2)f(x,t)=xtG(x)=xlnvuG(x)=lnvu+x(vvuu)f(x,t)=txG(x)=vx+1ux+1x+1G(x)=vx(v+vlnvx+1v(x+1)2)ux(u+ulnux+1u(x+1)2)f(x,t)=xtG(x)=xvxulnxG(x)=xv1(vx+vlnx1ln2x)xu1(ux+ulnx1ln2x)
Commented by mathmax by abdo last updated on 17/Jul/19
thank you sir mjs for this hard work when i find a formula  for this i will post...
thankyousirmjsforthishardworkwhenifindaformulaforthisiwillpost

Leave a Reply

Your email address will not be published. Required fields are marked *