Menu Close

let-f-x-x-1-1-x-2-n-study-tbe-derivability-of-f-at-points-0-and-1-n-natural-integr-




Question Number 40102 by maxmathsup by imad last updated on 15/Jul/18
let f(x) = ((∣x∣)/((1+∣1−x^2 ∣)^n ))  study tbe derivability of f at points 0 and 1 (n natural integr)
letf(x)=x(1+1x2)nstudytbederivabilityoffatpoints0and1(nnaturalintegr)
Answered by math khazana by abdo last updated on 26/Jul/18
1) derivability at 0  lim_(h→0^+ )    ((f(0+h) −f(0))/h) =lim_(h→0^+ )    (h/((1+(1−h^2 )^n ))  =lim_(h→0^+ )        (h/(h(2+h^2 )^n )) =lim_(h→0^+ )    (1/((2+h^2 )^n )) =(1/2^n )  lim_(h→0^− )   ((f(0+h) −f(0))/h) =lim_(h→0^− )    ((−1)/((2+h^2 )^n )) =((−1)/2^n )  we conclude that f is derivable at left and  right at but not derivable at this point.
1)derivabilityat0limh0+f(0+h)f(0)h=limh0+h(1+(1h2)n=limh0+hh(2+h2)n=limh0+1(2+h2)n=12nlimh0f(0+h)f(0)h=limh01(2+h2)n=12nweconcludethatfisderivableatleftandrightatbutnotderivableatthispoint.
Answered by math khazana by abdo last updated on 28/Jul/18
2) derivability at 1  lim_(h→0^+ )  ((f(1+h) −f(1))/h)  =lim_(h→0^+ )   ((∣1+h∣)/((1+∣1−(1+h)^2 ∣)^n )) −1  =lim_(h→0^+ )     ((1+h)/((1+((1+h)^2 −1))^n )) −1  =lim_(h→0^+ )     ((1+h)/((1+h^2  +2h)^n )) −1  =lim_(h→0^− )    ((1+h−(h+1)^(2n) )/((h+1)^(2n) )) =0  f is derivable at  right of 1  lim_(h→0^− )    ((f(1+h)−f(1))/h)=lim_(h→0^− )    ((1+h)/({1+∣1−(1+h)^2 }^n )) −1  =lim_(h→0^− )      ((1+h)/({1+(1−(1+h)^2 }^n )) −1  =lim_(h→0^− )     ((1+h)/({1+(1−h^2 −2h−1)}^n )) −1  =lim_(h→0^− )     ((1+h)/({1−h^2 −2h)^n ))−1 =0  f is derivable at left of 1  we have  f_g ^′ (1)=f_d ^′ (1) ⇒ f is derivable at x_0 =1
2)derivabilityat1limh0+f(1+h)f(1)h=limh0+1+h(1+1(1+h)2)n1=limh0+1+h(1+((1+h)21))n1=limh0+1+h(1+h2+2h)n1=limh01+h(h+1)2n(h+1)2n=0fisderivableatrightof1limh0f(1+h)f(1)h=limh01+h{1+1(1+h)2}n1=limh01+h{1+(1(1+h)2}n1=limh01+h{1+(1h22h1)}n1=limh01+h{1h22h)n1=0fisderivableatleftof1wehavefg(1)=fd(1)fisderivableatx0=1

Leave a Reply

Your email address will not be published. Required fields are marked *