Menu Close

let-f-x-x-1-2-e-2x-developp-f-at-integr-serie-




Question Number 38726 by maxmathsup by imad last updated on 28/Jun/18
let f(x)=((x+1)/(2 +e^(−2x) ))   developp f at integr serie.
$${let}\:{f}\left({x}\right)=\frac{{x}+\mathrm{1}}{\mathrm{2}\:+{e}^{−\mathrm{2}{x}} }\:\:\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Commented by math khazana by abdo last updated on 01/Jul/18
f(x)= (1/2)(x+1) (1/(1+((e^(−2x) /2)))) =(1/2)(x+1)Σ_(n=0) ^∞ (e^(−2nx) /2^n )  =(1/2)(x+1)Σ_(n=0) ^∞  (1/2^n ) (Σ_(p=0) ^∞   (((−2nx)^p )/(p!)))  =(1/2)(x+1)Σ_(n=0) ^∞  (1/2^n )(Σ_(p=0) ^∞  (((−2n)^p )/(p!)) x^p )...
$${f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right)\:\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{{e}^{−\mathrm{2}{x}} }{\mathrm{2}}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \frac{{e}^{−\mathrm{2}{nx}} }{\mathrm{2}^{{n}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\left(\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{2}{nx}\right)^{{p}} }{{p}!}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{1}\right)\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{2}{n}\right)^{{p}} }{{p}!}\:{x}^{{p}} \right)… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *