Menu Close

let-f-x-x-1-9-e-3x-calculstr-f-7-0-and-f-5-1-




Question Number 94650 by msup by abdo last updated on 20/May/20
let f(x) =(x+1)^9  e^(−3x)   calculstr f^((7)) (0) and f^((5)) (1)
letf(x)=(x+1)9e3xcalculstrf(7)(0)andf(5)(1)
Commented by i jagooll last updated on 20/May/20
question what number is the integral function of the gamma sir? I do not find it
Answered by mathmax by abdo last updated on 20/May/20
we have f^((n)) (x) =Σ_(k=0) ^n  C_n ^k    {(x+1)^9 }^((k))  (e^(−3x) )^((n−k))   k>9 ⇒{(x+1)^9 }^((k))  =0 and     for k≤9  we have  (x+1)^p )^((1))  =p(x+1)^(p−1)   ((x+1)^p )^((2))  =p(p−1)(x+1)^(p−1)  ⇒((x+1)^p )^((k))  =p(p−1)...(p−k+1)(x+1)^(p−k)   ((x+1)^9 )^((k))  =9.8....(10−k)(x+1)^(9−k)  ⇒  f^((n)) (x) =(x+1)^9 (−3)^n  e^(−3x) +Σ_(k=1) ^n  C_n ^k   9.8...(10−k)(x+1)^(9−k) (−3)^(n−k)  e^(−3x)  ⇒  f^((7)) (0) =1+Σ_(k=1) ^7  C_7 ^k  9.8....(10−k)(−3)^(7−k)   f^((5)) (1) =2^9 (−3)^5  e^(−3)  +Σ_(k=1) ^5  C_5 ^k  9.8....(10−k)2^(5−k)  e^(−3)
wehavef(n)(x)=k=0nCnk{(x+1)9}(k)(e3x)(nk)k>9{(x+1)9}(k)=0andfork9wehave(x+1)p)(1)=p(x+1)p1((x+1)p)(2)=p(p1)(x+1)p1((x+1)p)(k)=p(p1)(pk+1)(x+1)pk((x+1)9)(k)=9.8.(10k)(x+1)9kf(n)(x)=(x+1)9(3)ne3x+k=1nCnk9.8(10k)(x+1)9k(3)nke3xf(7)(0)=1+k=17C7k9.8.(10k)(3)7kf(5)(1)=29(3)5e3+k=15C5k9.8.(10k)25ke3

Leave a Reply

Your email address will not be published. Required fields are marked *