let-f-x-x-1-n-arctan-nx-calculate-f-n-0- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 62210 by maxmathsup by imad last updated on 17/Jun/19 letf(x)=(x+1)narctan(nx)calculatef(n)(0). Commented by mathmax by abdo last updated on 24/Jun/19 letdeterminef(p)(x)leibnizformulsegivef(p)(x)=∑k=0pCpk{(x+1)n}(k)(arctan(nx))(p−k)wehave(Xn)(k)=0sik>n(Xn)(1)=nXn−1⇒(Xn)(k)=n(n−1)..(n−k+1)Xn−k=n!(n−k)!Xn−kifk⩽nand(Xn)(n)=n!soforp⩾nwegetf(p)(x)=∑k=0nCpk{(x+1)n}(k){arctan(nx)}(p−k)+∑k=n+1pCpk{(x+1)n}(k){arctan(nx)}(p−k)=∑k=0nCpkn!(n−k)!(x+1)n−k{arctan(nx)}(p−k)⇒f(n)(x)=∑k=0nCnkn!(n−k)!{arctan(nx)}(n−k)=∑k=0nCnkk!n!k!(n−k)!{arctan(nx)}(n−k)=∑k=0nk!(Cnk)2{arctan(nx)}(n−k)wehave(arctan(nx))(1)=n1+n2x2=nn2(x2+1n2)=1n(x−in)(x+in)=1n(2in){1x−in−1x+in}=12i{1x−in−1(x+in)}⇒{arctan(nx)}(p)=12i{(1x−in)(p−1)−(1x+in)(p−1)}=12i{(−1)p−1(p−1)!(x−in)p−(−1)p−1(p−1)!(x+in)p}⇒{arctan(nx)}(n−k)=12i(−1)n−k−1(n−k−1)!{1(x−in)n−k−1(x+in)n−k}⇒f(n)(x)=12i∑k=0nk!(Cnk)2(−1)n−k−1(n−k−1)!{1(x−in)n−k−1(x+in)n−k} Commented by mathmax by abdo last updated on 24/Jun/19 f(n)(0)=12i∑k=0nk!(Cnk)2(−1)n−k−1(n−k−1)!{1(−in)n−k−1(in)n−k}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-g-a-x-a-x-2-a-2-dx-Next Next post: Question-127749 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.