Menu Close

let-f-x-x-1-x-1-1-find-D-f-2-determine-f-1-x-3-find-f-x-dx-4-dtetrmine-f-1-x-5-let-g-x-ch-x-2-calculate-fog-x-and-fog-x-




Question Number 46419 by maxmathsup by imad last updated on 25/Oct/18
let f(x)= (√(x+1−(√(x−1))))  1) find D_f   2) determine f^(−1) (x)  3) find ∫ f(x)dx  4) dtetrmine ∫  f^(−1) (x)  5) let g(x)= (ch(x))^2    calculate fog(x) and (fog)^′ (x) .
letf(x)=x+1x11)findDf2)determinef1(x)3)findf(x)dx4)dtetrminef1(x)5)letg(x)=(ch(x))2calculatefog(x)and(fog)(x).
Commented by maxmathsup by imad last updated on 28/Oct/18
1) x∈ D_f  ⇔x+1−(√(x−1))≥0 and x≥1 ⇒x+1≥(√(x−1)) and x≥1  ⇒(x+1)^2 ≥x−1 and x≥1 ⇒x^2  +2x+1−x+1≥0 and x≥1   ⇒x(x+1)≥0 and x≥1 ⇒ D_f =[1,+∞[  2)let f(x)=y ⇒x=f^(−1) (y)  f(x)=y ⇒x+1−(√(x−1))=y^2  ⇒(x+1)−y^2 =(√(x−1))⇒  (x+1−y^2 )^2 =x−1 ⇒(x+1)^2 −2y^2 (x+1)+y^4 −x+1=0 ⇒  x^2  +2x+1 −2y^2 x−2y^2  +y^4 −x+1=0 ⇒  x^2  +(1−2y^2 )x +y^4 −2y^2  +2=0 this equation have s^t    ⇔Δ≥0 ⇒  (1−2y^2 )^2 −4(y^4 −2y^2 +2)≥0 ⇒4y^4 −4y^2 +1−4y^4  +8y^2 −8 ≥0 ⇒  4y^2 −7 ≥0  so x_1 =((2y^2 −1+(√(4y^2 −7)))/2)  and x_2 =((2y^2 −1−(√(4y^2 −7)))/2)  f^(−1) (x)=((2x^2 −1 +^− (√(4x^2 −7)))/2)
1)xDfx+1x10andx1x+1x1andx1(x+1)2x1andx1x2+2x+1x+10andx1x(x+1)0andx1Df=[1,+[2)letf(x)=yx=f1(y)f(x)=yx+1x1=y2(x+1)y2=x1(x+1y2)2=x1(x+1)22y2(x+1)+y4x+1=0x2+2x+12y2x2y2+y4x+1=0x2+(12y2)x+y42y2+2=0thisequationhavestΔ0(12y2)24(y42y2+2)04y44y2+14y4+8y2804y270sox1=2y21+4y272andx2=2y214y272f1(x)=2x21+4x272
Commented by maxmathsup by imad last updated on 28/Oct/18
3) ∫ f(x)dx = ∫ (√(x−1+2−(√(x−1))))dx  changement (√(x−1))=t givex−1=t^2 ⇒  ∫ f(x)dx = ∫ (√(t^2  +2−t))2t dt =2 ∫t (√(t^2 −t +2))dt  =2 ∫  t(√(t^2 −2(1/2)t +(1/4)+2−(1/4)))dt = 2 ∫ t(√((t−(1/2))^2 +(7/4)))dt  =_(t−(1/2)=((√7)/2)sh(t))    2  ∫ (((√7)/2)sh(t)+(1/2))((√7)/2)ch(t)((√7)/2)ch(t)dt  =(7/4) ∫ (1+(√7)sh(t)ch^2 (t) dt  =(7/4) ∫ ch^2 t dt  +((7(√7))/4) ∫ sh(t)ch^2 (t)dt  but ∫ ch^2 t dt =∫ ((1+ch(2t))/2)dt  =(t/2) +(1/4)sh(2t)=(t/2) +(1/2)sh(t)ch(t) and  ∫  sh(t)ch^2 t dt =(1/3)ch^3 t  ⇒  ∫ f(x)dx =(7/8)t +(7/8)sht)ch(t) +((7(√7))/(12))ch^3 (t) +c  =(7/8)(√(x−1)) +(7/8)sh((√(x−1)))ch((√(x−1)))+((7(√7))/(12))ch^3 ((√(x−1))) +c .
3)f(x)dx=x1+2x1dxchangementx1=tgivex1=t2f(x)dx=t2+2t2tdt=2tt2t+2dt=2tt2212t+14+214dt=2t(t12)2+74dt=t12=72sh(t)2(72sh(t)+12)72ch(t)72ch(t)dt=74(1+7sh(t)ch2(t)dt=74ch2tdt+774sh(t)ch2(t)dtbutch2tdt=1+ch(2t)2dt=t2+14sh(2t)=t2+12sh(t)ch(t)andsh(t)ch2tdt=13ch3tf(x)dx=78t+78sht)ch(t)+7712ch3(t)+c=78x1+78sh(x1)ch(x1)+7712ch3(x1)+c.
Commented by maxmathsup by imad last updated on 28/Oct/18
4) we have 2∫  f^(−1) (x)dx= ∫ (2x^2 −1)dx +^−  ∫  (√(4x^2 −7))dx but  ∫ (2x^2 −1)dx =(2/3)x^3 −x +c_1   ∫ (√(4x^2 −7))dx=∫2(√(x^2 −(7/4)))dx =_(x=((√7)/2)ch(t))   2 ∫  ((√7)/2)sh(t)((√7)/2)sh(t)dt  =(7/2) ∫  sh^2 (t)dt =(7/4) ∫ (ch(2t)−1)dt  =(7/8)sh(2t)−((7t)/4) +c_2   =(7/4)sh(t)ch(t)−(7/4)t +c_2 =(7/4) (√((((2x)/( (√7) )))^2 −1))((2x)/( (√7))) −(7/4) argch(((2x)/( (√7))))+c_2   =((√7)/2)(√(((4x^2 )/7)−1))−(7/4)ln(((2x)/( (√7))) +(√(((4x^2 )/7)−1))) +c_2   ⇒  ∫ f^(−1) (x)dx =(x^3 /3) −(x/2) +^−  {((√7)/4)(√(((4x^2 )/7)−1)) −(7/8)ln(((2x)/( (√7))) +(√(((4x^2 )/7)−1))) +C .
4)wehave2f1(x)dx=(2x21)dx+4x27dxbut(2x21)dx=23x3x+c14x27dx=2x274dx=x=72ch(t)272sh(t)72sh(t)dt=72sh2(t)dt=74(ch(2t)1)dt=78sh(2t)7t4+c2=74sh(t)ch(t)74t+c2=74(2x7)212x774argch(2x7)+c2=724x27174ln(2x7+4x271)+c2f1(x)dx=x33x2+{744x27178ln(2x7+4x271)+C.
Commented by maxmathsup by imad last updated on 28/Oct/18
error of typo   ∫ f^(−1) (x)dx=(x^3 /3) −(x/2) +^− {((√7)/4) x(√(((4x^2 )/7)−1)) −(7/8)ln(((2x)/( (√7))) +(√(((4x^2 )/7)−1))) +C
erroroftypof1(x)dx=x33x2+{74x4x27178ln(2x7+4x271)+C

Leave a Reply

Your email address will not be published. Required fields are marked *