Menu Close

let-F-x-x-1-x-2-1-arctan-1-t-dt-1-calculate-F-x-x-2-find-lim-x-0-F-x-




Question Number 35682 by prof Abdo imad last updated on 22/May/18
let F(x) = ∫_(x +1) ^(x^2  +1)    arctan(1+t)dt  1) calculate (∂F/∂x)(x)  2)  find lim_(x→0)  F(x) .
letF(x)=x+1x2+1arctan(1+t)dt1)calculateFx(x)2)findlimx0F(x).
Commented by tanmay.chaudhury50@gmail.com last updated on 22/May/18
Commented by abdo mathsup 649 cc last updated on 23/May/18
1) we have (∂F/∂x)(x) =(x^2 +1)^′  arctan(2+x^2 )  −(x+1)^′  arctan( 2+x)  =2x arctan(3+x^2 ) −arctan(2+x)  2) ∃ ξ ∈]x+1,x^2 +1[  /  F(x) = arctan(1+ξ) ∫_(x+1) ^(x^2  +1) dt  =(x^2 −x) arctan(1+ξ) ⇒ lim_(x→0) F(x)  = 0×arctan(2)=0 .
1)wehaveFx(x)=(x2+1)arctan(2+x2)(x+1)arctan(2+x)=2xarctan(3+x2)arctan(2+x)2)ξ]x+1,x2+1[/F(x)=arctan(1+ξ)x+1x2+1dt=(x2x)arctan(1+ξ)limx0F(x)=0×arctan(2)=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
∫tan^(−1) (1+t)dt  =ttan^(−1) (1+t)−∫(1/(1+(1+t)^2 ))×tdt  =t×tan^(−1) (t+1)−∫(t/(t^2 +2t+2))dt  =t×tan^(−1) (t+1)−(1/2)∫((2t+2−2)/(t^2 +2t+2))dt  =t×tan^(−1) (t+1)−(1/2)∫((2t+2)/(t^2 +2t+2))+∫(dt/(1+(t+1)^2 ))  =t×tan^(−1) (t+1)−(1/2)×ln(t^2 +2t+2)+tan^(−1) (t+1  now putting the upper limit and lower limit  up=(x^2 +1)tan^(−1) (x^2 +2)−(1/2)×ln(x^4 +2^ x^2 +1+  2x^2 +2+2)+tan^(−1) (x^2 +2)    lw=(x+1)×tan^(−1) (x+2)−(1/2)×ln(x^2 +2x+1+  2x+2+2)+tan^(−1) (x+2)  required result =(∂/∂x)(up−lw)    page area not sufficient ...
tan1(1+t)dt=ttan1(1+t)11+(1+t)2×tdt=t×tan1(t+1)tt2+2t+2dt=t×tan1(t+1)122t+22t2+2t+2dt=t×tan1(t+1)122t+2t2+2t+2+dt1+(t+1)2=t×tan1(t+1)12×ln(t2+2t+2)+tan1(t+1nowputtingtheupperlimitandlowerlimitup=(x2+1)tan1(x2+2)12×ln(x4+2x2+1+2x2+2+2)+tan1(x2+2)lw=(x+1)×tan1(x+2)12×ln(x2+2x+1+2x+2+2)+tan1(x+2)requiredresult=x(uplw)pageareanotsufficient

Leave a Reply

Your email address will not be published. Required fields are marked *