Menu Close

Let-f-x-x-1-x-2-and-r-0-f-x-r-be-a-convergent-series-Find-the-value-of-x-such-that-n-0-r-0-x-1-x-2-r-n-4-




Question Number 122036 by physicstutes last updated on 13/Nov/20
Let  f(x) = (((x+1)/(x+2))) and Σ_(r=0) ^∞ [f(x)]^r  be a convergent series  Find the value of x such that    Σ_(n=0) ^∞ [Σ_(r=0) ^∞ (((x+1)/(x+2)))^r ]^n  = 4
Letf(x)=(x+1x+2)andr=0[f(x)]rbeaconvergentseriesFindthevalueofxsuchthatn=0[r=0(x+1x+2)r]n=4
Answered by Dwaipayan Shikari last updated on 13/Nov/20
f(x)=((x+1)/(x+2))  Σ_(r=0) ^∞ [f(x)]^r =1+((x+1)/(x+2))+...=(1/(1−((x+1)/(x+2))))=x+2  Σ_(n=0) ^∞ (x+2)^n =(1/(1−(x+2)))=(1/(−(x+1)))  (1/(−(x+1)))=4⇒−(x+1)=(1/4)⇒x=−(5/4)
f(x)=x+1x+2r=0[f(x)]r=1+x+1x+2+=11x+1x+2=x+2n=0(x+2)n=11(x+2)=1(x+1)1(x+1)=4(x+1)=14x=54
Commented by physicstutes last updated on 13/Nov/20
Fantastic result. What i execpted. Thanks alot.
Fantasticresult.Whatiexecpted.Thanksalot.

Leave a Reply

Your email address will not be published. Required fields are marked *