Menu Close

Let-f-x-x-1-x-2-x-3-then-find-the-value-of-k-for-which-f-x-k-has-1-no-solution-2-only-one-solution-3-two-solutions-of-same-sign-4-two-solutions-of-opposite-sign-




Question Number 21168 by Tinkutara last updated on 15/Sep/17
Let f(x) = ∣x − 1∣ + ∣x − 2∣ + ∣x − 3∣,  then find the value of k for which f(x)  = k has  1. no solution  2. only one solution  3. two solutions of same sign  4. two solutions of opposite sign
Letf(x)=x1+x2+x3,thenfindthevalueofkforwhichf(x)=khas1.nosolution2.onlyonesolution3.twosolutionsofsamesign4.twosolutionsofoppositesign
Answered by alex041103 last updated on 15/Sep/17
f(x)= { ((3x−6 , x∈(3, ∞), f(x)∈(3,∞))),((3, x=3)),((x , x∈(2, 3), f(x)∈(2,3))),((2, x=2)),((4−x , x∈(1, 2),f(x)∈(2,3))),((3, x=1)),((6−3x , x∈(−∞, 1), f(x)∈(3,∞))) :}  ⇒f(x)∈[2,∞)    ⇒1. k∈(−∞, 2)  ⇒2. k=2  ⇒3. k=3  ⇒4. k∈[6, ∞)
f(x)={3x6,x(3,),f(x)(3,)3,x=3x,x(2,3),f(x)(2,3)2,x=24x,x(1,2),f(x)(2,3)3,x=163x,x(,1),f(x)(3,)f(x)[2,)1.k(,2)2.k=23.k=34.k[6,)
Commented by Tinkutara last updated on 15/Sep/17
Answer of 3^(rd)  part is wrong.
Answerof3rdpartiswrong.
Commented by alex041103 last updated on 15/Sep/17
f(x)= { ((3x−6 , x∈(3, ∞), f(x)∈(3,∞))),((3, x=3)),((x , x∈(2, 3), f(x)∈(2,3))),((2, x=2)),((4−x , x∈(1, 2),f(x)∈(2,3))),((3, x=1)),((6−3x , x∈(−∞, 1), f(x)∈(3,∞))) :}  You can see that for x=1,3 f(x)=k=3  since sgn(1)=sgn(3) amd because  the intervals in blue are open there aren′t  any more x for which f(x)=3  Am I wrong?
f(x)={3x6,x(3,),f(x)(3,)3,x=3x,x(2,3),f(x)(2,3)2,x=24x,x(1,2),f(x)(2,3)3,x=163x,x(,1),f(x)(3,)Youcanseethatforx=1,3f(x)=k=3sincesgn(1)=sgn(3)amdbecausetheintervalsinblueareopentherearentanymorexforwhichf(x)=3AmIwrong?

Leave a Reply

Your email address will not be published. Required fields are marked *